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Isometries; Conformal Maps

Definition A diffeomorphism ϕ : S → S̄ is an isometry if

〈w1, w2〉p = 〈dϕp(w1), dϕp(w2)〉ϕ(p) ∀ p ∈ S, ∀w1, w2 ∈ TpS.

The surfaces S and S̄ are then said to be isometric.

In other words, a diffeomorphism ϕ is an isometry if the differential dϕ preserves the inner
product. It follows that, dϕp : TpS → Tϕ(p)S̄ being an isometry,

Ip(w) = 〈w,w〉p = 〈dϕ(w), dϕ(w)〉ϕ(p) = Iϕ(p)(dϕp(w)) ∀w ∈ TpS,

i.e. the diffeomorphism ϕ : S → S̄ prserves the first fundamental form.

Conversely, if the diffeomorphism ϕ : S → S̄ prserves the first fundamental form, then

2〈w1, w2〉 = Ip(w1 + w2)− Ip(w1)− Ip(w2) ∀w1, w2 ∈ TpS
= Iϕ(p)(dϕp(w1 + w2))− Iϕ(p)(dϕp(w1))− Iϕ(p)(dϕp(w2))

= 〈dϕ(w1), dϕ(w2)〉,

and ϕ is, therefore, an isometry.

Definition A map ϕ : V → S̄ of a neighborhood V ⊂ S of p ∈ S is a local isometry at p if there
exists a neighborhood V̄ ⊂ S̄ of ϕ(p) ∈ S̄ such that ϕ : V → V̄ is an isometry. If there exists a
local isometry into S̄ at every p ∈ S, the surface S is said to be locally isometric to S̄.

It is clear that if ϕ : S → S̄ is a diffeomorphism and a local isometry for every p ∈ S, then ϕ is
an isometry (globally).

However, a local isometry is not necessary an isometry globally, e.g. the xy-plane P = {(x, y, z) ∈
R3 | z = 0} and the cylinder S = {(x, y, z) ∈ R3 | x2 + y2 = 1} are locally isometric, but they
are not homeomorphic, so P and S are not diffeomorphic or isometric globally.

Since any simple closed curve C ⊂ P in the plane P can be shrunk (deformed) continuously
into a point without leaving the plane P, and this topological property in P is preserved by a
homeomorphism ϕ : P → ϕ(P ).

Note that a parallel C ′, e.g. C ′ = {(cosu, sinu, 0) | u ∈ [0, 2π]} ⊂ S, of the cylinder S does not
have that property while the corresponding unit circle C = {(x, y, 0) | x2 + y2 = 1} in P can be
shrunk continuously into a point without leaving the plane P, so P and S are not homeomorphic.
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Proposition Suppose that there exist parametrizations X : U → S and X̄ : U → S such that
E = Ē, F = F̄ , G = Ḡ in U. Then the map ϕ = X̄ ◦X−1 : X(U)→ S̄ is a local isometry.

Proof Let p ∈ X(U) and w ∈ TpS. Then w is tangent to a curve X(α(t)) at t = 0, where
α(t) = (u(t), v(t)) is a curve in U ; thus, w may be written (t = 0)

w = Xuu
′ +Xvv

′.

By definition, the vector dϕp(w) is the tangent vector to the curve X̄ ◦X−1 ◦X(α(t)) = X̄(α(t))
at t = 0. Thus,

dϕp(w) = X̄uu
′ + X̄vv

′.

Since

Ip(w) = E(u′)2 + 2Fu′v′ +G(v′)2,

Iϕ(p)(dϕp(w)) = Ē(u′)2 + 2F̄ u′v′ + Ḡ(v′)2,

and the assumption E = Ē, F = F̄ , G = Ḡ in U, we conclude that Ip(w) = Iϕ(p)(dϕp(w)) for all
p ∈ X(U) and all w ∈ TpS; hence, ϕ is a local isometry.

Definition A diffeomorphism ϕ : S → S̄ is called a conformal map if

〈dϕp(w1), dϕp(w2)〉 = λ2(p) 〈w1, w2〉
w1=w2=⇒ |dϕp(w1)|2 = λ2(p) |w1|2 ∀ p ∈ S, ∀w1, w2 ∈ TpS,

where λ2 is a nowhere-zero differentiable function on S; the surface S and S̄ are then said to be
conformal. A map ϕ : V → S̄ of a neighborhood V ⊂ S of p ∈ S is a local conformal map at
p if there exists a neighborhood V̄ ⊂ S̄ of ϕ(p) ∈ S̄ such that ϕ : V → V̄ is a conformal map.
If there exists a local conformal map into S̄ at every p ∈ S, the surface S is said to be locally
conformal to S̄.

The geometric meaning of the above definition is that the angles (but not necessarily the lengths)
are preserved by conformal maps. In fact, let α : I → S and β : I → S be two curves in S which
intersect at, say, t = 0. Their angle θ at t = 0 is given by

cos θ =
〈α′, β′〉
|α′| |β′|

, 0 ≤ θ ≤ π.

A conformal map ϕ : S → S̄ maps these curves into ϕ◦α : I → S̄, ϕ◦β : I → S̄, which intersect
when t = 0, making an angle θ̄ given by

cos θ̄ =
〈dϕ(α′), dϕ(β′)〉
|dϕ(α′)| |dϕ(β′)|

=
λ2〈α′, β′〉
λ2|α′| |β′|

= cos θ.

Proposition Suppose that there exist parametrizations X : U → S and X̄ : U → S̄ such that
E = λ2Ē, F = λ2F̄ , G = λ2Ḡ in U, where λ2 is a nowhere-zero differentiable function in U. Then
the map ϕ = X̄ ◦X−1 : X(U)→ S̄ is a local conformal map.

Example For a > 0, let

X(u, v) = (a cosh v cosu, a cosh v sinu, av), (u, v) ∈ U = {0 < u < 2π, −∞ < v <∞}
X̄(ū, v̄) = (v̄ cos ū, v̄ sin ū, aū), (ū, v̄) ∈ U = {0 < ū < 2π, −∞ < v̄ <∞}

be parametrizations of the catenoid S and the helicoid S̄, rspectively. Then the coefficients of
the first fundamental forms are
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E = a2 cosh2 v, F = 0, G = a2(1 + sinh2 v) = a2 cosh2 v ∀ (u, v) ∈ U,
Ē = a2 + v̄2, F̄ = 0, Ḡ = 1 ∀ (ū, v̄) ∈ U.

Let us make the following change of parameters

ū = u, v̄ = a sinh v, ∀ (u, v) ∈ U,

which is possible since the map is clearly one-to-one, and the Jacobian

∂(ū, v̄)

∂(u, v)
= a cosh v 6= 0 ∀ (u, v) ∈ U.

Thus,
X̄(u, v) = (a sinh v cosu, a sinh v sinu, au), (u, v) ∈ U,

is a new parametrization of the helicoid with

E = a2 cosh2 v, F = 0, G = a2 cosh2 v ∀ (u, v) ∈ U.

We conclude that the catenoid and the helicoid are locally isometric.

Example Let S be the one-sheeted cone (minus the vertex)

z = k
√
x2 + y2, k > 0, (x, y) 6= (0, 0),

and let U ⊂ R2 be the open set given in polar coordinates (ρ, θ) by

0 < ρ <∞, 0 < θ < 2π sinα,
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where 2α (0 < 2α < π) is the angle at the vertex of the cone (i.e., where cotα = k), and let
F : U → S ⊂ R3 be the map

F (ρ, θ) =

(
ρ sinα cos

(
θ

sinα

)
, ρ sinα sin

(
θ

sinα

)
, ρ cosα

)
.

Then

• F (U) ⊂ S, since

k
√
x2 + y2 = cotα

√
ρ2 sin2 α = ρ cosα = z,

• F : U → S \ {(ρ sinα, 0, ρ cosα) | 0 < ρ < ∞} is a diffeomorphism from U onto the cone
minus a generator θ = 0, since F and dF are one-to-one in U,

and thus F (ρ, θ) is a parametrization of S with the coefficients of the first fundamental form
being

E = 〈Fρ, Fρ〉 = 1, F = 〈Fρ, Fθ〉 = 0, G = 〈Fθ, Fθ〉 = ρ2,

Also since U may be viewed as a regular surface parametrized by

X̄(ρ, θ) = (ρ cos θ, ρ sin θ, 0) ∈ R3, 0 < ρ <∞, 0 < θ < 2π sinα,

with the coefficients of the first fundamental form of U in this parametrization being

Ē = 〈X̄ρ, X̄ρ〉 = 1 = E, F̄ = 〈X̄ρ, X̄θ〉 = 0 = F, Ḡ = 〈X̄θ, X̄θ〉 = ρ2 = G,

F : U → S is a local isometry.

The most important property of conformal maps is given by the following theorem, which we
shall not prove.

Theorem Any two regular surfaces are locally conformal.

The proof is based on the possibility of parametrizing a neighborhood of any point of a regular
surface in such a way that the coefficients of the first fundamental form are

E = λ2(u, v), F = 0, G = λ2(u, v).

Such a coordinate system is called isothermal. Once the existence of an isothermal coordinate
system of a regular surface S is assumed, S is clearly locally conformal to a plane, and by
composition locally conformal to any other surface.
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The Gauss Theorem and the Equations of Compatibility

Let X : U ⊂ R2 → S be a parametrization in the orientation of S. At each p ∈ X(U), since
Xu, Xv, N ∈ R3 are linearly independent, we may express vectors Xuu, Xuv, Xvu, Xvv, Nu, Nv ∈
R3 in the basis {Xu, Xv, N} and obtain

Xuu = Γ1
11Xu + Γ2

11Xv + eN

Xuv = Γ1
12Xu + Γ2

12Xv + fN

Xvu = Γ1
21Xu + Γ2

21Xv + fN

Xvv = Γ1
22Xu + Γ2

22Xv + gN

Nu = a11Xu + a21Xv

Nv = a12Xu + a22Xv

where the aij, i, j = 1, 2, were obtained in Chapter 3 and the coefficients Γkij, i, j = 1, 2, are
called the Christoffel symbols of S in the parametrization X. Since Xuv = Xvu, we conclude that
Γ1

12 = Γ1
21 and Γ2

12 = Γ2
21; that is, the Christoffel symbols are symmetric relative to the lower

indices.

To determine the Christoffel symbols, we take the inner product of the first four relations with
Xu and Xv, obtaining the system

E F

F G

Γ1
11

Γ2
11

 =

〈Xuu, Xu〉

〈Xuu, Xv〉

 =


1

2
Eu

Fu −
1

2
Ev

 =⇒

Γ1
11

Γ2
11

 =

E F

F G

−1


1

2
Eu

Fu −
1

2
Ev


Γ1

12

Γ2
12

 =

〈Xuv, Xu〉

〈Xuv, Xv〉

 =


1

2
Ev

1

2
Gu

 =⇒

Γ1
21

Γ2
21

 =

Γ1
12

Γ2
12

 =

E F

F G

−1


1

2
Ev

1

2
Gu


E F

F G

Γ1
22

Γ2
22

 =

〈Xvv, Xu〉

〈Xvv, Xv〉

 =


Fv −

1

2
Gu

1

2
Gv

 =⇒

Γ1
22

Γ2
22

 =

E F

F G

−1


Fv −

1

2
Gu

1

2
Gv


where we have used

〈Xuu, Xu〉 =
1

2

∂

∂u
〈Xu, Xu〉 =

1

2
Eu, 〈Xuu, Xv〉 =

∂

∂u
〈Xu, Xv〉−〈Xu, Xvu〉 = Fu−〈Xu, Xuv〉 = Fu−

1

2
Ev

In particular, if X is an orthogonal parametrization, i.e. F = 〈Xu, Xv〉 = 0 at each p ∈ X(U),
then (

Γ1
11

Γ2
11

)
=

1

2(EG− F 2)

(
GEu
−EEv

)
(

Γ1
12

Γ2
12

)
=

1

2(EG− F 2)

(
GEv
EGu

)
(

Γ1
22

Γ2
22

)
=

1

2(EG− F 2)

(
GGu

EGv

)
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Thus, it is possible to solve the above system and to compute the Christoffel symbols in terms
of the coefficients of the first fundamental form, E, F, G and their derivatives. Hence, all geo-
metric concepts and properties expressed in terms of the Christoffel symbols are invariant under
isometries.

Example Let S be a surface of revolution parametrized by

X(u, v) = (f(v) cosu, f(v) sin v, g(v)), f(v) 6= 0.

Since
E = (f(v))2, F = 0, G = (f ′(v))2 + (g′(v))2,

we obtain
Eu = 0, Ev = 2ff ′, Fu = Fv = 0, Gu = 0, Gv = 2(f ′f ′′ + g′g′′),

and

Γ1
11 = 0, Γ2

11 = − ff ′

(f ′)2 + (g′)2
, Γ1

12 =
ff ′

f 2
, Γ2

12 = 0, Γ1
22 = 0, Γ2

22 =
f ′f ′′ + g′g′′

(f ′)2 + (g′)2
.

Since X : U ⊂ R2 → R3 is differentiable,

(Xuu)v = (Xuv)u,

⇐⇒
(
Γ1

11Xu + Γ2
11Xv + eN

)
v

=
(
Γ1

12Xu + Γ2
12Xv + fN

)
u

⇐⇒ Γ1
11Xuv + Γ2

11Xvv + eNv + (Γ1
11)vXu + (Γ2

11)vXv + evN

= Γ1
12Xuu + Γ2

12Xvu + fNu + (Γ1
12)uXu + (Γ2

12)uXv + fuN (∗)

By equating the coefficients of Xv, and using(
a11 a21

a12 a22

)
= −

(
e f
f g

)(
E F
F G

)−1

=
−1

EG− F 2

(
eG− fF −eF + fE
fG− gF −fF + gE

)
.

we obtain the following formula for the Gaussian curvature K

Γ1
11Γ2

12 + Γ2
11Γ2

22 + ea22 + (Γ2
11)v = Γ1

12Γ2
11 + Γ2

12Γ2
12 + fa21 + (Γ2

12)u

⇐⇒ (Γ2
12)u − (Γ2

11)v + Γ1
12Γ2

11 + Γ2
12Γ2

12 − Γ1
11Γ2

12 − Γ2
11Γ2

22 = ea22 − fa21

⇐⇒ (Γ2
12)u − (Γ2

11)v + Γ1
12Γ2

11 + Γ2
12Γ2

12 − Γ1
11Γ2

12 − Γ2
11Γ2

22 = −E eg − f 2

EG− F 2

⇐⇒ (Γ2
12)u − (Γ2

11)v + Γ1
12Γ2

11 + Γ2
12Γ2

12 − Γ1
11Γ2

12 − Γ2
11Γ2

22 = −EK,

THEOREMA EGREGIUM (Gauss) The Gaussian curvature K of a surface is invariant by
local isometries.

Remarks

• By equating the coefficients of Xu in equation (∗), we obtain another formula of the Gaussian
curvature K.

(Γ1
12)u − (Γ1

11)v + Γ1
12Γ1

11 + Γ2
12Γ1

12 − Γ1
11Γ1

12 − Γ2
11Γ1

22 = (Γ1
12)u − (Γ1

11)v + Γ2
12Γ1

12 − Γ2
11Γ1

22 = FK.

• By equating the coefficients of N in equation (∗), we obtain

ev − fu = eΓ1
12 + f(Γ2

12 − Γ1
11)− gΓ2

11 (†).
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• By equating the coefficients of N in equation (Xvv)u − (Xvu)v = 0, we obtain

fv − gu = eΓ1
22 + f(Γ2

22 − Γ1
12)− gΓ2

12 (††).

Equations (†) and (††) are called Mainardi-Codazzi equations.

Theorem (Bonnet) Let E, F, G, e, f, g be differentiable functions, defined in an open set
V ⊂ R2, with E > 0 and G > 0. Assume that

• the given functions satisfy formally the Gauss and Mainardi-Codazzi equations,

• and that EG− F 2 > 0.

Then,

• for every q ∈ V there exists a neighborhood U ⊂ V of q,

• and a diffeomorphism X : U → X(U) ⊂ R3

such that the regular surface X(U) ⊂ R3 has E, F, G and e, f, g as coefficients of the first and
second fundamental forms, respectively.

Furthermore, if U is connected and if

X̄ : U → X̄(U) ⊂ R3

is another diffeomorphism satisfying the same conditions, then there exist a translation T and a
proper linear orthogonal transformation ρ in R3 such that

X̄ = T ◦ ρ ◦X.

Remark In the following, we shall calculate the Christoffel symbols and Gaussian curvatures in
terms of the metric tensor (gij) and its partial derivatives.

Let U be an open subset in the u1u2-plane, and X : U ⊂ R2 → S be a parametrization in the
orientation of S. At each p ∈ X(U), let X1 = Xu1 , X2 = Xu2 , and let

g11 = 〈X1, X1〉 = E, g12 = g21 = 〈X1, X2〉 = F, g22 = 〈X2, X2〉 = G ⇐⇒
(
g11 g12

g21 g22

)
=

(
E F
F G

)
,

and (
g11 g12

g21 g22

)
= (gij) = (gij)

−1 =
1

det(gij)

(
g22 −g12

−g21 g11

)
=

1

EG− F 2

(
G −F
−F E

)
.

Note that
2∑

k=1

gmkgk`
(†)
= δm` =

{
1 if m = `

0 if m 6= `
.

Since X1, X2, N ∈ R3 are linearly independent, we may express vectors Xij = Xuiuj ∈ R3 and
Ni = Nui ∈ TpS as

Xij
(∗)
=

2∑
k=1

ΓkijXk + hijN, i, j = 1, 2, where

(
h11 h12

h21 h22

)
=

(
e f
f g

)

Ni
(∗∗)
=

2∑
j=1

ajiXj, i = 1, 2,
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where (
a11 a21

a12 a22

)
= −

(
h11 h12

h21 h22

)(
g11 g12

g21 g22

)
=

1

EG− F 2

(
h11 h12

h21 h22

)(
−g22 g21

g12 −g11

)
,

as obtained in Chapter 3 and the coefficients Γkij, i, j = 1, 2, are called the Christoffel symbols of

S in the parametrization X. Since Xij = Xji, we conclude that Γkij = Γkji; that is, the Christoffel
symbols are symmetric relative to the lower indices.

To determine the Christoffel symbols, we take the inner product of the Xij with Xk and use the
definition of (gij) and (gij) to obtain

〈Xij, Xk〉 =
∂

∂uj
〈Xi, Xk〉 − 〈Xi, Xkj〉 =

∂gik
∂uj
− 〈Xi, Xkj〉 = gik,j − 〈Xi, Xkj〉,

where gik,j =
∂gik
∂uj

(∗)⇐⇒ 〈
2∑
`=1

Γ`ijX`, Xk〉 = gik,j − 〈Xi, Xkj〉

⇐⇒
2∑
`=1

Γ`ijg`k = gik,j − 〈Xi, Xkj〉

(†)⇐⇒
2∑

k=1

2∑
`=1

Γ`ijg
mkg`k =

2∑
k=1

gmkgik,j −
2∑

k=1

gmk〈Xi, Xkj〉, m = 1, 2

(†)⇐⇒
2∑
`=1

δm`Γ
`
ij =

2∑
k=1

gmkgik,j −
2∑

k=1

gmk〈Xi, Xkj〉, m = 1, 2

(†)⇐⇒ Γmij =
2∑

k=1

gmkgik,j −
2∑

k=1

gmk〈Xi, Xkj〉, m = 1, 2

Γm
ij=Γm

ji⇐⇒ Γmji =
2∑

k=1

gmkgjk,i −
2∑

k=1

gmk〈Xj, Xki〉, m = 1, 2

=⇒ 2Γmij =
2∑

k=1

gmk(gik,j + gjk,i)−
2∑

k=1

gmk
∂

∂uk
〈Xi, Xj〉 =

2∑
k=1

gmk(gik,j + gjk,i − gij,k), m = 1, 2

=⇒ Γmij =
1

2

2∑
k=1

gmk(gik,j + gjk,i − gij,k), m, i, j = 1, 2.

Since X : U ⊂ R2 → R3 is differentiable,

(Xii)j = (Xij)i, 1 ≤ i 6= j ≤ 2

⇐⇒

(
2∑

k=1

ΓkiiXk + hiiN

)
j

=

(
2∑

k=1

ΓkijXk + hijN

)
i

⇐⇒
2∑

k=1

(Γkii)jXk +
2∑

k=1

ΓkiiXkj + hii,jN + hiiNj =
2∑

k=1

(Γkij)iXk +
2∑

k=1

ΓkijXki + hij,iN + hijNi,

where (Γkii)j =
∂Γkii
∂uj

, hij,i =
∂hij
∂ui
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⇐⇒
2∑

k=1

(Γkii)jXk +
2∑

k, `=1

ΓkiiΓ
`
kjX` +

2∑
k=1

ΓkiihkjN + hii,jN +
2∑

k=1

hiiakjXk

=
2∑

k=1

(Γkij)iXk +
2∑

k, `=1

ΓkijΓ
`
kiX` +

2∑
k=1

ΓkijhkiN + hij,iN +
2∑

k=1

hijakiXk

⇐⇒
2∑

k=1

(Γkii)jXk +
2∑

`, k=1

Γ`iiΓ
k
`jXk +

2∑
k=1

ΓkiihkjN + hii,jN +
2∑

k=1

hiiakjXk k ↔ ` in double sum

=
2∑

k=1

(Γkij)iXk +
2∑

`, k=1

Γ`ijΓ
k
`iXk +

2∑
k=1

ΓkijhkiN + hij,iN +
2∑

k=1

hijakiXk k ↔ ` in double sum

=⇒ 0 =
2∑

k=1

[
(Γkij)i − (Γkii)j +

2∑
`=1

Γ`ijΓ
k
`i −

2∑
`=1

Γ`iiΓ
k
`j + hijaki − hiiakj

]
Xk

+

(
hij,i − hii,j +

2∑
k=1

Γkijhki −
2∑

k=1

Γkiihkj

)
N

⇐⇒ (Γkij)i − (Γkii)j +
2∑
`=1

Γ`ijΓ
k
`i −

2∑
`=1

Γ`iiΓ
k
`j = hiiakj − hijaki 1 ≤ i 6= j ≤ 2,

and hij,i − hii,j +
2∑

k=1

Γkijhki −
2∑

k=1

Γkiihkj = 0 1 ≤ i 6= j ≤ 2 called Mainardi-Codazzi equations

Since hij = hji, 1 ≤ i 6= j ≤ 2,(
h11 h12

h21 h22

)
=

(
h11 h12

h21 h22

)−1

=
1

eg − f 2

(
h22 −h21

−h12 h11

)
=

1

eg − f 2

(
h22 −h12

−h21 h11

)
,

we have

hiiakj − hijaki = (eg − f 2)[hjjakj + hjiaki] = (eg − f 2)
2∑
`=1

hj`ak`

= (eg − f 2)×
[(
h11 h12

h21 h22

)
·
(
a11 a21

a12 a22

)]
jk

(the jk-entry of (hmn) · (apq))

=
eg − f 2

EG− F 2
×
[(
h11 h12

h21 h22

)
·
(
h11 h12

h21 h22

)
·
(
−g22 g21

g12 −g11

)]
jk

= K ×
(
−g22 g21

g12 −g11

)
jk

= K ×
(
−G F
F −E

)
jk

and the Gauss curvature formulas

(Γkij)i − (Γkii)j +
2∑
`=1

Γ`ijΓ
k
`i −

2∑
`=1

Γ`iiΓ
k
`j = hiiakj − hijaki = K ×

(
−g22 g21

g12 −g11

)
jk

,

where Γkij =
1

2

2∑
`=1

gk`(gi`,j + gj`,i − gij,`), i, j, k = 1, 2.
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In particular, we obtain the following when

j = k = 2, i = 1 =⇒ (Γ2
12)1 − (Γ2

11)2 +
2∑
`=1

Γ`12Γ2
`1 −

2∑
`=1

Γ`11Γ2
`2 = −h12a21 + h11a22 = −EK,

j = k = 1, i = 2 =⇒ (Γ1
21)2 − (Γ1

22)1 +
2∑
`=1

Γ`21Γ1
`2 −

2∑
`=1

Γ`22Γ1
`1 = h22ak1 − h21ak2 = −GK,

j 6= k = 1, i = 1 =⇒ (Γ1
12)1 − (Γ1

11)2 +
2∑
`=1

Γ`12Γ1
`1 −

2∑
`=1

Γ`11Γ1
`2 = −h12a11 + h11a12 = FK.

Example Let X(u1, u2) be an orthogonal parametrization (that is, F = g12 = g21 = 0) of a

neighborhood of an oriented surface S. Let gik,m =
∂gik

∂um
and gk`,m =

∂gk`
∂um

. Since

2∑
k=1

gikgkj = δij =

{
1 if i = j,

0 if i 6= j.
, g12 = g21 = 0 and g12 = g21 = 0,

and using Γkij =
1

2

2∑
k=1

gk`(gj`,i + g`i,j − gij,`) =
1

2
gkk(gjk,i + gki,j − gij,k), we have

2∑
k=1

gik,mgk` +
2∑

k=1

gikgk`,m = 0 =⇒
2∑
`=1

g`j
2∑

k=1

gik,mgk` +
2∑
`=1

g`j
2∑

k=1

gikgk`,m = 0

=⇒ gij,m =
2∑

k=1

gik,mδjk = −
2∑

k, `=1

gikgk`,mg
`j =⇒ gij,m = −gii gij,m gjj =⇒ gii,m = −gii gii,m gii,

=⇒ Γ2
12 =

1

2
g22 g22,1, Γ2

11 = −1

2
g22 g11,2, Γ1

12 =
1

2
g11 g11,2, Γ1

11 =
1

2
g11 g11,1, Γ2

22 =
1

2
g22 g22,2

and (
Γ2

12

)
1
−
(
Γ2

11

)
2

+
2∑
`=1

Γ`12Γ2
`1 −

2∑
`=1

Γ`11Γ2
`2 = −Kg11

⇐⇒ 1

2

(
g22 g22,1

)
1

+
1

2

(
g22 g11,2

)
2
− 1

4

(
g11 g11,2 g

22 g11,2

)
+

1

4

(
g22 g22,1 g

22 g22,1

)
−1

4

(
g11 g11,1 g

22 g22,1

)
+

1

4

(
g22 g11,2 g

22 g22,2

)
= −Kg11

⇐⇒
(

g22,1

2
√
g11g22

√
g11√
g22

)
1

+

(
g11,2

2
√
g11g22

√
g11√
g22

)
2

+
(g22,1)2 + g11,2g22,2

4 (g22)2
− (g11,2)2 + g11,1g22,1

4 g11 g22

= −Kg11

⇐⇒
(

g22,1

2
√
g11g22

)
1

√
g11√
g22

+

(
g11,2

2
√
g11g22

)
2

√
g11√
g22

= −Kg11

⇐⇒ K = − 1

2
√
g11 g22

[(
g22,1√
g11g22

)
1

+

(
g11,2√
g11g22

)
2

]

Parallel Transport. Geodesics.

Definition Let w : U → R3 be a differentiable tangent vector field in an open set U ⊂ S and
p ∈ U. Let y ∈ TpS. Consider a parametrized curve

α : (−ε, ε)→ U, with α(0) = p and α′(0) = y,
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Geometry Study Guide 4 (Continued)

and let w(t) = w(α(t)) ∈ Tα(t)S, t ∈ (−ε, ε), be the restriction of the vector field w to the curve
α.

Then the covariant derivative at p of the vector field w relative to the vector y, denoted
Dw

dt
(0)

or Dyw(p), is defined to be the normal projection of
dw

dt
(0) onto the plane TpS, i.e.

Dw

dt
(0) =

dw

dt
(0)− 〈dw

dt
(0), N(p)〉N.

In terms of a parametrization X(u1, u2) of U ⊂ S at p, let X(u1(t), u2(t)) = α(t) ⊂ S and

w(t) =a1(u1(t), u2(t))Xu1 + a2(u1(t), u2(t))Xu2 = a1(t)X1 + a2(t)X2 =
2∑
i=1

aiXi ∈ Tα(t)S

be the expression of α(t) and w(t) in the parametrization X(u, v), respectively. Then

dw

dt
=

2∑
i, j=1

aiXiju
′
j +

2∑
i=1

a′iXi =
2∑

i, j,k=1

aiu
′
jΓ

k
ijXk +

2∑
i, j=1

aiu
′
jhijN +

2∑
k=1

a′kXk

and the covariant derivative of w at t is given by

Dw

dt
=

2∑
i, j,k=1

aiu
′
jΓ

k
ijXk +

2∑
i=1

a′iXi

=
2∑

k=1

(
a′k +

2∑
i, j=1

Γkijaiu
′
j

)
Xk ∈ Tα(t)S

Note that the covariant differentiation
Dw

dt
depends only on the vector (u′1, u

′
2), the coordinates of

α′(t) in the basis {X1, X2}, and not on the curve α. Also since it depends only on the Christoffel

symbols, that is, the first fundamental form of the surface, the covariant differentiation
Dw

dt
is a

concept of intrinsic geometry.
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Definition A vector field w ∈ TαS along a parametrized curve α : I → S is said to be parallel

if
Dw

dt
= 0 for every t ∈ I.

Example In a plane P, since Γkij = 0, 1 ≤ i, j, k ≤ 2, the notion of parallel field w = a1X1 +a2X2

along a parametrized curve α ⊂ P reduces to that of a constant field, i.e. a′1 = a′2 = 0, along α;
that is, the length of the vector and its angle with a fixed direction are constant.

Those properties are partially reobtained on any surface as the following proposition shows.

Proposition Let w, v ∈ TαS be parallel vector fields along α : I → S. Then 〈w(t), v(t)〉 is
constant for all t ∈ I. In particular, the lengths |w(t)| and |v(t)| are constant, and the angle
∠(v(t), w(t)) between w(t), v(t) ∈ Tα(t)S is constant for all t ∈ I.

Proof Since w(t), v(t) ∈ Tα(t)S and
Dw

dt
=
Dv

dt
= 0, we have

d

dt
〈w(t), v(t)〉 = 〈dw

dt
, v(t)〉+ 〈w(t),

dv

dt
〉 = 〈Dw

dt
, v(t)〉+ 〈w(t),

Dv

dt
〉 = 0,

and 〈w(t), v(t)〉 = constant for all t ∈ I and for any parallel vector fields w and v along α.

Proposition Let α : I → S be a parametrized curve in S and let w0 ∈ Tα(t0)S, t0 ∈ I. Then
there exists a unique parallel vector field w(t) = a1(t)X1(u1(t), u2(t))+a2(t)X2(u1(t), u2(t)) along
α(t), with w(t0) = w0, i.e. there is a unique solution to the initial-value problem

a′k +
2∑

i, j=1

Γkijaiu
′
j = 0, k = 1, 2, with a1X1 + a2X2|t=t0 = w(t0) = w0.

Definition Let α : I → S be a parametrized curve and w0 ∈ Tα(t0)S, t0 ∈ I. Let w be a paralle
vector field along α, with w(t0) = w0. The vector w(t1), t1 ∈ I, is called the parallel transport of
w0 along α at the point t1.

Definition A nonconstant, parametrized curve γ : I → S is said to be geodesic at t ∈ I if the
field of its tangent vectors γ′(t) is parallel along γ at t; that is

Dγ′(t)

dt
= 0 ;

γ is a parametrized geodesic if it is geodesic for all t ∈ I, i.e. γ(t) = X(u1(t), u2(t)), t ∈ I is a
geodesic if γ′(t) = u′1X1 + u′2X2 satisfies the geodesic equations

Dγ′(t)

dt
= 0 ⇐⇒ u′′k +

2∑
i,j=1

Γkiju
′
iu
′
j, k = 1, 2. (∗)

Examples
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(1) If S is a plane, then S can be parametrized by X(u1, u2) with Xij = Xuiuj = 0 ∈ R3

everywhere in S, 1 ≤ i, j ≤ 2. This implies that X1 = Xu1 and X2 = Xu2 are constant
vector in S, Γkij = 0 for all 1 ≤ i, j, k ≤ 2, and γ(t) = X(u1(t), u2(t)) is a geodesic in a plane
S if

u′′k(t) = 0, ∀ t ∈ I =⇒ u′k(t) = ck (a constant) ∀ t ∈ I =⇒ uk(t) = ckt+dk ∀ t ∈ I, k = 1, 2

Hence γ is a geodesic in a plane S if and only if γ is a straight line in S.

(2) Let γ(u2) = (f(u2), 0, g(u2)), f(u2) 6= 0, a < u2 < b, be a regular curve and S be a surface
of revolution with the parametrization

X(u1, u2) = (f(u2) cosu1, f(u2) sinu1, g(u2)), 0 < u1 < 2π, a < u2 < b.

Then the matrix (gij) and its inverse (gij) of the first fundamental form
2∑

i,j=1

giju
′
iu
′
j are

given by(
g11 g12

g21 g22

)
=

(
f 2 0
0 (f ′)2 + (g′)2

)
⇐⇒

(
g11 g12

g21 g22

)
=

(
f−2 0

0
[
(f ′)2 + (g′)2

]−1

)

where f and g are functions of u2 and the Christoffel symbols Γkij =
1

2

2∑
`=1

gk`(gj`,i+g`i,j−gij,`)

are given by

Γ1
ij =

1

2
f−2 (gj1,i + g1i,j − gij,1) and Γ2

ij =
1

2

[
(f ′)2 + (g′)2

]−1
(gj2,i + g2i,j − gij,2)

and

(
Γ1

11 Γ1
12

Γ1
21 Γ1

22

)
=

 0
ff ′

f 2

ff ′

f 2
0

 and

(
Γ2

11 Γ2
12

Γ2
21 Γ2

22

)
=

−
ff ′

(f ′)2 + (g′)2
0

0
f ′f ′′ + g′g′′

(f ′)2 + (g′)2


this implies that X(u1(t), u2(t)) is a geodesic of the surface of revolution S if u1, u2 satisfy
the system of equations

u′′1 +
2ff ′

f 2
u′1u

′
2 = 0 and u′′2 −

ff ′

(f ′)2 + (g′)2
(u′1)2 +

f ′f ′′ + g′g′′

(f ′)2 + (g′)2
(u′2)2 = 0, (††)

where u′k =
duk
dt

, f ′ =
df

du2

and g′ =
dg

du2

.

If the meridian γ(s) = {X(u1, u2) | u1 = constant, u2 = u2(s)} is parametrized by arc
length s, then the 1st equation of (††) holds, and, since γ′(s) = X1u

′
1 +X2u

′
2 = X2u

′
2,

1 = 〈γ′(s), γ′(s)〉 = Ip(γ
′(s)) = 〈X1u

′
1+X2u

′
2, X1u

′
1+X2u

′
2〉 = g22 (u′2)2 =

[
(f ′)2+(g′)2

]
(u′2)2,

we have

(u′2)2 (∗)
=

1

(f ′)2 + (g′)2
=⇒ u′2 u

′′
2 = − f ′f ′′ + g′g′′[

(f ′)2 + (g′)2
]2 u′2
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by differentiating both sides with respect to s and using the Chain Rule to get
d

ds
f ′ = f ′′ u′2

and
d

ds
g′ = g′′ u′2. Multiplying both sides by u′2, we get

(u′2)2 u′′2 = − f ′f ′′ + g′g′′[
(f ′)2 + (g′)2

]2 (u′2)2 (∗)
=⇒ u′′2 = − f ′f ′′ + g′g′′

(f ′)2 + (g′)2
(u′2)2 the 2nd equation of (††)

and this implies that arc length parametrized meridians are geodesics.

If the parallel γ(s) = {X(u1, u2) | u2 = constant, u1 = u1(s)} is parametrized by arc
length s, since 1 = Ip(γ

′(s)) = (f(u2))2(u′1)2, we have (u′1)2 = 1/f(u2) = constant 6= 0
which implies that 2u′1u

′′
1 = 0 =⇒ u′′1 = 0, i.e. the 1st equation of (††) holds, so the arc

length parametrized parallels are geodesics if it satisfies the 2nd equation of (††)

ff ′

(f ′)2 + (g′)2
(u′1)2 = 0 =⇒ f ′ = 0 since f 6= 0, u′1 6= 0.

Definition Let w be a differentiable field of unit vectors along a parametrized curve α : I → S
on an oriented surface S. Since w(t), t ∈ I, is a unit vector field,

dw

dt
(t) ⊥ w(t) =⇒ Dw

dt
=

[
Dw

dt

]
(N ∧ w(t)),

where the real number

[
Dw

dt

]
is called the algebraic value of the covariant derivative of w at t.

Definition Let C be an oriented regular curve contained in an oriented surface S, and let α(s)
be a parametrization of C, in a neighborhood of p ∈ S, by the arc length s. The algebraic value

of the covariant derivative of α′(s) at p,

[
Dα′(s)

ds

]
= kg is called the geodesic curvature of C at

p.

Remark The geodesics which are regular curves are thus characterized as curves whose geodesic
curvature is zero and note that the geodesic curvature of C ⊂ S changes sign when we change
the orientation of either C or S.
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Furthermore, since
dα′(s)

ds
= k n(s), where n(s) is the unit normal vector to C at α(s), and since

Dα′(s)

ds
=
dα′(s)

ds
− 〈dα

′(s)

ds
,N〉N = k n(s)− k〈n(s), N〉N = k n(s)− knN =⇒ k2

g + k2
n = k2.

Example The absolute value of the geodesic curvature kg of a parallel C of colatitude ϕ in a
unit sphere S2 can be computed from the relation

1

sin2 ϕ
= k2

n + k2
g = 1 + k2

g =⇒ k2
g =

1

sin2 ϕ
− 1 =

cos2 ϕ

sin2 ϕ
= cot2 ϕ,

where the sign of kg depends on the orientations of S2 and C.

Lemma Let a and b be differentiable in I with a2 + b2 = 1 and ϕ0 be such that a(t0) = cosϕ0,
b(t0) = sinϕ0. Then the differentiable function ϕ defined by

ϕ(t) = ϕ0 +

∫ t

t0

(ab′ − ba′) du

satisfies
cosϕ(t) = a(t), sinϕ(t) = b(t), for t ∈ I, and ϕ(t0) = ϕ0.

Proof It suffices to show that the function

(a− cosϕ)2 + (b− sinϕ)2 = 0 ∀ t ∈ I,
a2+b2=1⇐⇒ 2− 2(a cosϕ+ b sinϕ) = 0 ∀ t ∈ I,
⇐⇒ A = a cosϕ+ b sinϕ = 1 ∀ t ∈ I.

Since a2 + b2 = 1 for all t ∈ I, aa′ = −bb′ and, by the definition of ϕ, we have

A′ = −a (sinϕ)ϕ′ + b (cosϕ)ϕ′ + a′ cosϕ+ b′ sinϕ

= −a (sinϕ) (ab′ − ba′) + b (cosϕ) (ab′ − ba′) + a′ cosϕ+ b′ sinϕ
aa′=−bb′

= −b′ (sinϕ) (a2 + b2)− a′ (cosϕ) (a2 + b2) + a′ cosϕ+ b′ sinϕ
a2+b2=1

= 0 ∀ t ∈ I.
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Therefore, A(t) = const., and since A(t0) = 1, the lemma is proved.

Remark Note that the differentiable function ψ defined by ψ(t) = ϕ0−
∫ t

t0

(ab′− ba′) du satisfies

cosψ(t) = a(t), − sinψ(t) = b(t), for t ∈ I, ψ(t0) = ϕ0, and ψ′(t) = −ϕ′(t).

Lemma Let v and w be two differentiable vector fields along the curve α : I → S, with |w(t)| =
|v(t)| = 1, t ∈ I. Then [

Dw

dt

]
−
[
Dv

dt

]
=
dϕ

dt
,

where ϕ is one of the differentiable determinations of the angle from v to w, as given by the
preceding Lemma.

Proof Since |w(t)| = |v(t)| = 1, for all t ∈ I,

〈v(t), w(t)〉 = cosϕ(t) ∀ t ∈ I

=⇒ 〈dv
dt
, w〉+ 〈v, dw

dt
〉 = − sinϕϕ′

=⇒ 〈Dv
dt
, w〉+ 〈v, Dw

dt
〉 = − sinϕϕ′

⇐⇒
[
Dv

dt

]
〈N ∧ v, w〉+

[
Dw

dt

]
〈v,N ∧ w〉 =

[
Dv

dt

]
〈N ∧ v, w〉 −

[
Dw

dt

]
〈w,N ∧ v〉 = − sinϕϕ′

⇐⇒
([

Dv

dt

]
−
[
Dw

dt

])
〈N ∧ v, w〉 =

([
Dv

dt

]
−
[
Dw

dt

])
〈N, v ∧ w〉 = − sinϕϕ′

⇐⇒
([

Dv

dt

]
−
[
Dw

dt

])
(− sinϕ) = (− sinϕ)ϕ′ if necessary switch orientation of angle ∠(v, w)

If ϕ 6= 0, then sinϕ 6= 0 and we obtain that

[
Dw

dt

]
−
[
Dv

dt

]
=
dϕ

dt
.

If ϕ = 0 at p, either ϕ ≡ 0 in a neighborhood U of p, or there exists a sequence (pn) → p with
ϕ(pn) 6= 0. In the first case, ϕ′ ≡ 0 in U, v = w and the Lemma holds trivially. In the second

case, since

[
Dw

dt

]
−
[
Dv

dt

]
=
dϕ

dt
at pn, the Lemma holds by continuity.

Remarks

(a) In particular, if

• C is a regular oriented curve on S,

• α(s) is a parametrization by the arc length s of C at p ∈ C,
• v(s) is a parallel field along α(s),

• w(s) = α′(s),

then

kg(s) =

[
Dα′(s)

ds

]
=

[
Dα′(s)

ds

]
−
[
Dv(s)

ds

]
=
dϕ

ds
, where ϕ(s) = ∠(v(s), α′(s)).

In other words, the geodesic curvature kg is the rate of change of the angle that the tangent
to the curve makes with a parallel direction along the curve. In the case of the plane, the
parallel direction is fixed and the geodesic curvature kg reduces to the usual curvature k.
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(b) Proposition If X(u1, u2) is an orthogonal parametrization (that is, F = g12 = g21 = 0)
of a neighborhood of an oriented surface S, and w(t) is a differentiable field of unit vectors
along the curve X(u1(t), u2(t)), then[

Dw

dt

]
=

1

2
√
g

(g22,1 u
′
2 − g11,2 u

′
1) +

dϕ

dt
=

1

2
√
EG

(Gu1 u
′
2 − Eu2 u′1) +

dϕ

dt
, (†)

where ϕ(t) is the angle from X1 to w(t) in the given orientation.(
g11 g12

g21 g22

)
=

(
〈X1, X1〉 〈X1, X2〉
〈X2, X1〉 〈X2, X2〉

)
,

(
g11 g12

g21 g22

)
=

(
g11 g12

g21 g22

)−1

, g = det

(
g11 g12

g21 g22

)
.

Proof Since X(u1, u2) is an orthogonal parametrization, we have(
g11 g12

g21 g22

)
=

(
g11 0
0 g22

)
,

(
g11 g12

g21 g22

)
=

(
g11 0
0 g22

)
=

(
g−1

11 0
0 g−1

22

)

and since Γkij =
1

2

2∑
`=1

gk`(gj`,i + g`i,j − gij,`) =
1

2
gkk(gjk,i + gki,j − gij,k), we have

(
Γ1

11 Γ1
12

Γ1
21 Γ1

22

)
=

1

2
g11 g11,1

1

2
g11 g11,2

1

2
g11 g11,2 −

1

2
g11 g22,1

 and

(
Γ2

11 Γ2
12

Γ2
21 Γ2

22

)
=

−1

2
g22 g11,2

1

2
g22 g22,1

1

2
g22 g22,1

1

2
g22 g22,2


Let ei(t) = ei(u1(t), u2(t)) =

Xi√
gii
, i = 1, 2, be the field of unit vectors ei =

Xi√
gii

restricted

to the curve X(u1(t), u2(t)) with e1∧e2 = N, the given orientation of S, and set v(t) = e1(t)
in the preceding Lemma, we get[

Dw

dt

]
=

[
De1

dt

]
+
dϕ

dt
=

[
D(X1/

√
g11)

dt

]
+
dϕ

dt
=

[
D(Xu1/

√
E)

dt

]
+
dϕ

dt
.

Now

D(X1/
√
g11)

dt
=

2∑
j=1

∂

∂uj

(
1
√
g11

)
u′jX1 +

2∑
j, k=1

1
√
g11

Γk1j u
′
j Xk

= −
2∑
j=1

g11,j u
′
j

2g
3/2
11

X1 +
2∑
j=1

1
√
g11

Γ1
1j u

′
j X1 +

2∑
j=1

1
√
g11

Γ2
1j u

′
j X2

= −
2∑
j=1

g11,j u
′
j

2g
3/2
11

X1+
2∑
j=1

g11,j u
′
j

2g
3/2
11

X1 +
2∑
j=1

−g11,2 u
′
1 + g22,1 u

′
2

2
√
g11 g22

e2

=
2∑
j=1

−g11,2 u
′
1 + g22,1 u

′
2

2
√
g11 g22

e2

This implies that[
Dw

dt

]
=

[
D(X1/

√
g11)

dt

]
+
dϕ

dt
=

2∑
j=1

−g11,2 u
′
1 + g22,1 u

′
2

2
√
g

+
dϕ

dt
.
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(c) Proposition (Liouville) If α(s) is a parametrization by arc length of a neighborhood of
a point p ∈ S of a regular oriented curve C on an oriented surface S, and if X(u1, u2) is an
orthogonal parametrization of S in p and ϕ(s) is the angle that X1 makes with α′(s) in the
given orientation, then

kg = (kg)1 cosϕ+ (kg)2 sinϕ+
dϕ

ds
,

where (kg)1 and (kg)2 are the geodesic curvatures of the coordinate curves u2 = const. and
u1 = const. respectively.

Proof By setting w = α′(s) in the preceding Proposition, we obtain

kg =

[
Dw

ds

]
=

1

2
√
g

(g22,1 u
′
2 − g11,2 u

′
1) +

dϕ

ds
.

Let γ1(s) = {X(u1(s), u2(s)) | u1 = u1(s), u2 = constant} and γ2(s) = {X(u1(s), u2(s)) |
u2 = u2(s), u1 = constant} be arc length parametrized coordinate curves with geodesic
curvatures (kg)1 and (kg)2, respectively. Since

1 = 〈γ′i(s), γ′i(s)〉 = gii(u
′
i)

2 =⇒ u′i =
1
√
gii
, i = 1, 2,

and ∠(X1, γ
′
1) = 0, ∠(X1, γ

′
2) =

π

2
for all s,

(kg)1 =

[
Dγ′1
ds

]
=

1

2
√
g

(−g11,2 u
′
1) = − g11,2

2g11
√
g22

, (kg)2 =

[
Dγ′2
ds

]
=
g22,1 u

′
2

2
√
g

=
g22,1

2g22
√
g11

.

Also since ϕ(s) is the angle that X1 makes with α′(s) = u′1X1+u′2X2 in the given orientation,
and since

cosϕ = 〈α′, X1√
g11

〉 =
√
g11u

′
1 and sinϕ = 〈α′, X2√

g22

〉 =
√
g22u

′
2,

we have

(kg)1 cosϕ+ (kg)2 sinϕ+
dϕ

ds
=

1

2
√
g

(g22,1 u
′
2 − g11,2 u

′
1) +

dϕ

ds
= kg.

The Gauss-Bonnet Theorem and Its Applications

Definition Let α; [0, `]→ S be a continuous map from the closed interval [0, `] into the regular
surface S. We say that α is a simple, closed, piecewise regular, parametrized curve if

1. α(0) = α(`),

2. t1 6= t2, t1, t2 ∈ [0, `), then α(t1) 6= α(t2),

3. there exists a subdivision 0 = t0 < t1 < · · · < tk < tk+1 = ` of (0, `] such that α is
differentiable and regular in each (ti, ti+1), i = 0, . . . , k,

4. lim
t→t±i

α′(t) = α′(t±i ) 6= 0 exists for each i = 0, . . . , k.

The points α(ti), i = 0, . . . , k, are called the vertices of α and the traces α([ti, ti+1]) are called
the regular arcs of α. It is usual to call the trace α([0, `]) of α, a closed piecewise regular curve.
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Assume that S is oriented and let |θi|, 0 ≤ |θi| < π, be the smallest determination of the angle
from α′(t−i ) to α′(t+i ). If |θi| 6= π, we give θi the sign of the determinant (α′(t−i ), α′(t+i ), N). This
means that if the vertex α(ti) is not a “cusp”, the sign of θi is given by the orientation of S. The
signed angle θi, −π < θi < π, is called the exterior angle at the vertex α(ti).

Gauss-Bonnet Theorem (Local) Let X : U → S be an isothermal parametrization (i.e.,
F = g12 = g21 = 0, E = g11 = g22 = G = λ2(u1, u2)) of an oriented surface S, where U ⊂ R2 is
homeomorphic to an open disk and X is compatible with the orientation of S.

Let R ⊂ X(U) be a simple region of S and let α : I → S be such that ∂R = α(I).

• Assume that α is positively oriented, parametrized by arc length s, and

• let α(s0), . . . , α(sk) and θ0, . . . , θk be, respectively, the vertices and the exterior angles of α.

Then
k∑
i=0

∫ si+1

si

kg(s) ds+

∫∫
R

K dσ +
k∑
i=0

θi = 2π, (∗)

where kg(s) is the geodesic curvature of the regular arc of α and K is the Gaussian curvature
of S.

Remarks

(a) If R ⊂ X(U) is a geodesic triangle in S (that is, a triangle whose sides are arcs of geodesics),
then kg(s) = 0, s ∈ (ti, ti+1), i = 1, 2, 3 and∫∫

R

K dσ = 2π −
3∑
i=1

θi = 2π −
3∑
i=1

(π − ϕi) =
3∑
i=1

ϕi − π,

where ϕi = π − θi is defined to be the interior angle at the vertex α(ti). In particular, if
K = constant, then

3∑
i=1

ϕi − π =

∫∫
R

K dσ = K A(R), where A(R) = the area of R.

(b) The restriction that the region R be contained in the image set of an isothermal parametriza-
tion is needed only to simplify the proof and to be able to use the theorem of turning tan-
gents. As we shall see later (Corollary 1 of the global Gauss-Bonnet theorem) the above
result still holds for any simple region of a regular surface. This is quite plausible, since Eq.
(∗) does not involve in any way a particular parametrization.
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Proof Let u1 = u1(s), u2 = u2(s) be the expression of X. By using a preceding Proposition, we
have

kg(s) =
1

2
√
g

(g22,1 u
′
2 − g11,2 u

′
1) +

dϕi
ds

,

where ϕi = ϕi(s) is a differentiable function which measures the positive angle from Xu1 to α′(s)
in [si, si+1]. By integrating the above expression in every interval [si, si+1] and adding up the
results,

k∑
i=0

∫ si+1

si

kg(s) ds

=
k∑
i=0

∫ si+1

si

(
g22,1

2
√
g

du2

ds
− g11,2

2
√
g

du1

ds

)
ds+

k∑
i=0

(ϕi(si+1)− ϕi(si))

=
k∑
i=0

∫ si+1

si

(
g22,1

2
√
g

du2

ds
− g11,2

2
√
g

du1

ds

)
ds+

k−1∑
i=0

(ϕi(si+1)− ϕi+1(si+1)) + ϕk(sk+1)− ϕ0(s0)

=
k∑
i=0

∫ si+1

si

(
−g11,2

2
√
g

)
du1 +

(
g22,1

2
√
g

)
du2 ± 2π −

k∑
i=0

θi since α is simple closed

=

∫∫
X−1(R)

[(
g11,2

2
√
g

)
u2

+

(
g22,1

2
√
g

)
u1

]
du1 du2 + 2π −

k∑
i=0

θi

since α is positively oriented and by the Green’s Theorem

=

∫∫
X−1(R)

[(
λu2
λ

)
u2

+

(
λu1
λ

)
u1

]
du1 du2 + 2π −

k∑
i=0

θi since g11 = g22 = λ2 = g

=

∫∫
X−1(R)

[
(log λ)u2u2 + (log λ)u1u1

]
du1 du2 + 2π −

k∑
i=0

θi

=

∫∫
X−1(R)

λ2

2λ2

(
∆ log λ2

)
du1 du2 + 2π −

k∑
i=0

θi

= −
∫∫

X−1(R)

K λ2 du1 du2 + 2π −
k∑
i=0

θi by the Exercise 2 of 4-3

= −
∫∫

R

K dσ + 2π −
k∑
i=0

θi since g = λ2

Hence we have
k∑
i=0

∫ si+1

si

kg(s) ds+

∫∫
R

K dσ +
k∑
i=0

θi = 2π.

Remark

• Let X : U → S be an isothermal parametrization at a point p ∈ S, and let R ⊂ X(U) be a
simple region without vertices, containing p in its interior.

• Let α : [0, `]→ X(U) be a curve parametrized by arc length s such that ∂R = α([0, `]).

• Let w0 be a unit vector tangent to S at α(0) and let w(s), s ∈ [0, `], be the parallel transport
of w0 along α.
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Then

0 =

∫ `

0

[
Dw

ds

]
ds since w is parallel along α

by (†)
=

∫ `

0

1

2
√
EG

(
Gu1

du2

ds
− Eu2

du1

ds

)
ds+

∫ `

0

dϕ

ds
ds

by (∗)
= −

∫∫
R

K dσ + ϕ(`)− ϕ(0).

where ϕ = ϕ(s) is a differentiable determination of the angle from Xu1 to w(s). It follows that
ϕ(`)− ϕ(0) = ∆ϕ is given by

∆ϕ =

∫∫
R

K dσ.

Now, ∆ϕ does not depend on the choice of w0, and it follows from the expression above that ∆ϕ
does not depend on the choice of α(0) either. By taking the limit

lim
R→p

∆ϕ

A(R)
= K(p),

where A(R) denotes the area of the region R, we obtain the desired interpretation of K.

Definitions

• Let S be a regular surface. A connected region R ⊂ S is said to be regular if R is compact
and its boundary ∂R is the finite union of (simple) closed piecewise regular curves which
do not intersect (the region in (a) is regular, but that in (b) is not).

• A simple region which has only three vertices with exterior angles αi 6= 0, i = 1, 2, 3, is
called a triangle.

• A triangulation of a regular region R ⊂ S is a family F of triangles Ti, i = 1, . . . , n, such
that
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1.
n⋃
i=1

Ti =
⋃
Ti∈F

Ti = R,

2. If Ti ∩ Tj 6= ∅, then Ti ∩ Tj is either a common edge of Ti and Tj or a common vertex
of Ti and Tj.

• Given a triangulation F of a regular region R ⊂ S of a surface S, we shall denote by

– F the number of triangles (faces),

– E the number of sides (edges),

– V the number of vertices of the triangulation.

The number
F − E + V = χ

is called the Euler-Poincaré characteristic of the triangulation.

Propositions (without proofs)

1. Every regular region of a regular surface admits a triangulation.

2. Let S be an oriented surface and {Xα}, α ∈ A, a family of parametrizations compatible
with the orientation of S. Let R ⊂ S be a regular region of S. Then there is a triangulation
F of R such that every triangle T ∈ F is contained in some coordinate neighborhood of
the family {Xα}. Furthermore, if the boundary of every triangle of F is positively oriented,
adjacent triangles determine opposite orientations in the common edge.

3. If R ⊂ S is a regular region of a surface S, the Euler-Poincaré charateristc does not depend
on the triangulation of R. It is convenient, therefore, to denote it by χ(R).

4. Let S ⊂ R3 be a compact connected surface; then one of the values 2, 0, −2, . . . , −2n, . . .
is assumed by the Euler-Poincaré charateristic χ(S). Furthermore, if S ′ ⊂ R3 is another
compact surface and χ(S) = χ(S ′), then S is homeomorphic to S ′.

In other words, every compact connected surface S ⊂ R3 is homeomorphic to a sphere with
a certain number g of handles. The number

g =
2− χ(S)

2
is called the genus of S.

4. Let R ⊂ S be a regular region of an oriented surface S and let F be a triangulation of R
such that every triangle Tj ∈ F , j = 1, . . . , k, is contained in a coordinate neighborhood
Xj(Uj) of a family of parametrizations {Xα}, α ∈ A, compatible with the orientation of S.
Let f be a differentiable function on S. Then the sum

k∑
j=1

∫∫
X−1

j (Tj)

f(uj, vj)
√
EjGj − F 2

j duj dvj
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does not depend on the triangulation F or on the family {Xj} of parametrizations of S.

This sum has, therefore, a geometrical meaning and is called the integral of f over the
regular region R. It is usually denoted by∫∫

R

f dσ.

Gauss Bonnet Theorem (Global) Let R ⊂ S be a regular region of an oriented surface and
let C1, . . . , Cn be the closed, simple, piecewise regular curves which form the boundary ∂R of R.
Suppose that each Ci is positively oriented and let θ1, . . . , θp be the set of all exterior angles of
the curves C1, . . . , Cn. Then

n∑
i=1

∫
Ci

kg(s) ds+

∫∫
R

K dσ +

p∑
`=1

θ` = 2πχ(R) (∗∗),

where s denotes the arc length of Ci, and the integral over Ci means the sum of integrals in
every regular arc of Ci.

Proof Consider a triangulation F = {Tj}Fj=1 of the region R such that every triangle Tj is
contained in a coordinate neighborhood of a family of isothermal parametrizations compatible
with the orientation of S. Such a triangulation exists by a preceding Proposition. Furthermore,
if the boundary of every triangle of F is positively oriented, we obtain opposite orientations in
the edges which are common to adjacent triangles.

By applying to every triangle the local Gauss-Bonnet theorem and adding up the results we
obtain, using a preceding Proposition and the fact that each interior side is described twice in
opposite orientations,

∑
i

∫
Ci

kg(s) ds+

∫∫
R

K dσ +
F∑
j=1

3∑
k=1

θjk = 2πF,

where F denotes the number of triangles of F , and θj1, θj2, θj3 are the exterior angles of the
triangle Tj.

We shall now introduce the interior angles of the triangle Tj, given by ϕjk = π− θjk, k = 1, 2, 3.
Thus,

F∑
j=1

3∑
k=1

θjk =
F∑
j=1

3∑
k=1

(π − ϕjk) =
F∑
j=1

3∑
k=1

π −
F∑
j=1

3∑
k=1

ϕjk = 3πF −
F∑
j=1

3∑
k=1

ϕjk.
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We shall use the following notation:

Ee = number of exterior edges of F ,

Ei = number of interior edges of F ,

Ve = number of exterior vertices of F ,

Vi = number of interior vertices of F .

Since the curves Ci are closed, Ee = Ve. Furthermore, it is easy to show by induction that

3F = 2Ei + Ee

and therefore that
F∑
j=1

3∑
k=1

θjk = 2πEi + πEe −
F∑
j=1

3∑
k=1

ϕjk.

Observe that

• the exterior vertices may be either vertices of some curve Ci or vertices introduced by
the triangulation, and if Vec is the number of vertices of the curves Ci and Vet is the
number of exterior vertices of the triangulation which are not vertices of some curve Ci,
then Ve = Vec + Vet.

• the sum of angles around each interior vertex is 2π, the sum of angles around each exterior
vertex of the triangulation is π.

We obtain
F∑
j=1

3∑
k=1

θjk = 2πEi + πEe − 2πVi − πVet −
p∑
`=1

(π − θ`).

By adding πEe to and subtracting it from the expression above and taking into consideration
that Ee = Ve, we conclude that

F∑
j=1

3∑
k=1

θjk = 2πEi + 2πEe − 2πVi − πVe − πVet − πVec +

p∑
`=1

θ` = 2πE − 2πV +

p∑
`=1

θ`.

By putting things together, we finally obtain

n∑
i=1

∫
Ci

kg(s) ds+

∫∫
R

K dσ +

p∑
`=1

θ` = 2π(F − E + V ) = 2πχ(R).

Corollary If R is a simple region of S, then

k∑
i=0

∫ si+1

si

kg(s) ds+

∫∫
R

K dσ +
k∑
i=0

θi = 2π

Corollary Let S be an orientable compact surface; then∫∫
S

K dσ = 2πχ(S)
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