Geometry Study Guide 4 Spring 2021

Isometries; Conformal Maps

Definition A diffeomorphism ¢ : S — S is an isometry if
(w1, wa)y = (dpp(wr), dop(W2))py Vp €S, Ywr, wy € T,S.

The surfaces S and S are then said to be isometric.

In other words, a diffeomorphism ¢ is an isometry if the differential dy preserves the inner
product. It follows that, dy, : T,,S — T,;,)S being an isometry,

I(w) = (w,w), = (dp(w), dp(w)) op) = Lo (dpp(w)) Yw € T,S,

i.e. the diffeomorphism ¢ : S — S prserves the first fundamental form.

Conversely, if the diffeomorphism ¢ : S — S prserves the first fundamental form, then

2(wr,we) = IL(wy +ws) — L(wy) — I(ws) Vwy,wy €T,5
= Iy (dep(wi + w2)) — L) (dpp(wr)) — o) (dep(ws2))
= (dp(wr),dp(ws)),

and ¢ is, therefore, an isometry.

Definition A map ¢ : V' — _5’ of a neighborhood V' C S of p € S'is a local isometry at p if there
exists a neighborhood V' C S of ¢(p) € S such that ¢ : V' — V' is an isometry. If there exists a
local isometry into S at every p € S, the surface S is said to be locally isometric to S.

It is clear that if ¢ : S — S is a diffeomorphism and a local isometry for every p € S, then ¢ is
an isometry (globally).

However, a local isometry is not necessary an isometry globally, e.g. the zy-plane P = {(z,y, 2) €
R? | 2 = 0} and the cylinder S = {(x,y, 2) € R® | 2° + y* = 1} are locally isometric, but they
are not homeomorphic, so P and S are not diffeomorphic or isometric globally.

(&

P

N~e—

C C P can be shrunk continuously into p without leaving P. The same does
not hold for C' C S.

Since any simple closed curve C' C P in the plane P can be shrunk (deformed) continuously
into a point without leaving the plane P, and this topological property in P is preserved by a
homeomorphism ¢ : P — ¢(P).

Note that a parallel C’, e.g. C" = {(cosu,sinu,0) | u € [0,27]} C S, of the cylinder S does not
have that property while the corresponding unit circle C' = {(z,y,0) | 2 + y* = 1} in P can be
shrunk continuously into a point without leaving the plane P, so P and S are not homeomorphic.
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Proposition Suppose that there exist parametrizations X : U — 5 and X : U — S such that
E=FE F=F G=Gin U Then the map ¢ = X o X ' : X(U) — S is a local isometry.

Proof Let p € X(U) and w € T,S. Then w is tangent to a curve X(«(t)) at t = 0, where
a(t) = (u(t),v(t)) is a curve in U; thus, w may be written (¢ = 0)

w= X,u + X,

By definition, the vector dip,(w) is the tangent vector to the curve X o X ' o X (a(t)) = X (a(t))
at t = 0. Thus,

dop(w) = Xu' + X,

Since

L(w) = E@)*+2Fuv +GQ')?,
Ly (dpp(w)) = EW)? + 2Fu'v' + G(v')?,

and the assumption £ = E, F' = F, G = G in U, we conclude that I,(w) = I, (dp,(w)) for all
p € X(U) and all w € T,,S; hence, ¢ is a local isometry.

Definition A diffeomorphism ¢ : S — S is called a conformal map if
(dpp(wn), dpy(ws)) = N*(p) (w1, w2) =" |dipy(wn)[* = N*(p) [wi > Vp € S, Vwy, wy € T8,

where \? is a nowhere-zero differentiable function on S; the surface S and S are then said to be
conformal. A map ¢ : V — S of a neighborhood V' C S of p € S is a local conformal map at
p if there exists a neighborhood V' C S of »(p) € S such that ¢ : V — V is a conformal map.
If there exists a local conformal map into S at every p € S, the surface S is said to be locally
conformal to S.

The geometric meaning of the above definition is that the angles (but not necessarily the lengths)
are preserved by conformal maps. In fact, let a: I — S and g : I — S be two curves in S which
intersect at, say, t = 0. Their angle 6 at t = 0 is given by

(o, 5)
o[ 18]

0<o<mr.

cosf =

A conformal map ¢ : S — S maps these curves into poa : [ — S, pofB:1— S, which intersect
when ¢t = 0, making an angle 6 given by

(de(a), dp(B)) _ X', ')
ldo(a)| [dp(B)]  N?|e| |8

= cos 0.

cosf =

Proposition Suppose that there exist parametrizations X : U — S and X : U — S such that
E=M)E, F :_)\2F .G =XGin U, where A2 is a nowhere-zero differentiable function in U. Then
the map ¢ = X o X ': X(U) — S is a local conformal map.

Example For a > 0, let

X(u,v) = (acoshvcosu,acoshvsinu,av), (u,v)eU ={0<u<2m, —o0<v < o0}

X(u,v) = (vcosu,vsinu,au), (u,0)elU={0<u<2m, —00 <0V <00}

be parametrizations of the catenoid S and the helicoid S, rspectively. Then the coefficients of
the first fundamental forms are
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E =d*cosh®>v, F =0, G=d*(1+sinh®v)=a?cosh’®v VY (u,v) €U,

E=d*+v>, F=0, G=1 V(a,v)€U.
Let us make the following change of parameters

u=wu, v=asinhv, V(u,v)eU,
which is possible since the map is clearly one-to-one, and the Jacobian

d(u,v)

A%Y) _ acosh .
. v) acoshv #0 VY (u,v) €U

Thus,

X (u,v) = (asinhvcosu,asinhvsinu,au), (u,v) € U,

is a new parametrization of the helicoid with
E =da*cosh’v, F=0, G=da*cosh’v V(u,v)€U.

We conclude that the catenoid and the helicoid are locally isometric.

(a)

".'"l"

0,",, []
il
XX

W
W

Example Let S be the one-sheeted cone (minus the vertex)

z=kyaxt4+y? k>0, (z,y) # (0,0),
and let U C R? be the open set given in polar coordinates (p, #) by

0<p<oo, 0<60<2msina,
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2rsin a

sin o

where 2o (0 < 20 < ) is the angle at the vertex of the cone (i.e., where cota = k), and let
F:U — S C R? be the map

7 0
F(p,0) = (psinacos( ‘ ),psinasin( , ),pcosa).
sin v sin «

o F(U) C S, since

Then

kv/22 + 12 = cotay/p?sin®a = pcosa = z,

o F:U — S\ {(psine,0,pcosa) | 0 < p < oo} is a diffeomorphism from U onto the cone
minus a generator 6 = 0, since F' and dF' are one-to-one in U,

and thus F'(p,0) is a parametrization of S with the coefficients of the first fundamental form
being
E=(F,F)=1 F=(F,F)=0 G=(F,F)=/",

Also since U may be viewed as a regular surface parametrized by
X(p,0) = (pcosh, psinf,0) € R*, 0<p<oo, 0<60<2rsina,

with the coefficients of the first fundamental form of U in this parametrization being

E=(X,X,)=1=E, F=(X,,Xp)=0=F, G=(Xp,Xg)=p"=0G,

F:U — S is a local isometry.

The most important property of conformal maps is given by the following theorem, which we
shall not prove.

Theorem Any two regular surfaces are locally conformal.
The proof is based on the possibility of parametrizing a neighborhood of any point of a regular
surface in such a way that the coefficients of the first fundamental form are

E=X(u,v), F=0, G=MN(u,v).

Such a coordinate system is called isothermal. Once the existence of an isothermal coordinate
system of a regular surface S is assumed, S is clearly locally conformal to a plane, and by
composition locally conformal to any other surface.
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The Gauss Theorem and the Equations of Compatibility

Let X : U C R*> — S be a parametrization in the orientation of S. At each p € X (U), since
Xu, Xy, N € R? are linearly independent, we may express vectors Xy, Xuvs Xous X, Nu, Ny €
R? in the basis {X,, X,, N} and obtain

Xpw = T3 X, +T7,X, +eN

Xuw = DX, +THX, + fN

Xpw = Ty X, +T5, X, + fN

Xy = DI5X, +T5,X, +gN
N, = anXy +anX,

Ny = apX, +anX,
where the a;;, 7,7 = 1,2, were obtained in Chapter 3 and the coefficients Ffj, 1,7 = 1,2, are
called the Christoffel symbols of S in the parametrization X. Since X, = X,., we conclude that
I}, = I}, and '}, = I['3;; that is, the Christoffel symbols are symmetric relative to the lower
indices.

To determine the Christoffel symbols, we take the inner product of the first four relations with
X, and X, obtaining the system

1 1
E F\ (T4 (X s Xoo) 5 Tl E F\ [ 3Fu
= = —_— =
F G) \I}, (Xuu Xo) r_lp I3 F G r_lp
2
1 1
Fb <XUU7XU> EEU Fél F%Z E F B §EU
= = _— = =
F%2 <Xuv7 Xv> 1@ F%l F%Q F G EG
2 u u
1 1
E F\ [T, (X0, Xo) Fy — 5Gu Tl E F\ ' [fo— 3G
= = _— =
F G F%z <XU’U7XU> EG F%Q PG lG
9 9 v

where we have used

1 1 1
583<XU’X“> = §Eu, (X, Xy) = ﬁ(Xu,Xv)—<Xu,XW> = F,—(Xy, Xw) = Fu—§Ev
u

In particular, if X is an orthogonal parametrization, i.e. F' = (X,, X,) = 0 at each p € X(U),

then
Fil B 1 GE,
F%l - 2(EG — F?) \—FEE,
Fb _ 1 GE,
F%Q - 2(EG — F?) EG,

IV 1 GG,
I3,)  2(EG - F?) \EG,
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Thus, it is possible to solve the above system and to compute the Christoffel symbols in terms
of the coefficients of the first fundamental form, E, F, G and their derivatives. Hence, all geo-
metric concepts and properties expressed in terms of the Christoffel symbols are invariant under
isometries.

Example Let S be a surface of revolution parametrized by

X(u,v) = (f(v) cosu, f(v)sinv, g(v)), f(v) #0.

Since
E=(f(v)? F=0, G=(f(0)"+ ()
we obtain
Eu :O, Ev :2ffl, Fu :Fv :07 Gu :Oa Gv :2(flf”+g/g”)a
and
/ / ! rn + g/g//
rlzo,r2=——ff ,Plzﬁ,lﬁzo,rl:o,r?:—ff :
H H (f2+(g)2 2 8 - 2 ()2 +(9)?

Since X : U € R? — R? is differentiable,

(qu)y = (Xuv)ua

(T Xu + T, X, + eN)U = (Mp Xy + X, + fN)u

I} X + 01 Xy 4+ eNy 4+ (U)o Xu + (T30 Xy + euN

= Mo Xuu + T Xow + fNu+ (D)X + (T)u Xy + fuN - (%)

—
—

By equating the coefficients of X, and using

(a11 agl)__(e f) (E F)_l_ —1 (eG—fF —eF—I—fE)
a2 ) [ g9)\F G CBG-F2\ fG—gF —fF+4+gE)’

we obtain the following formula for the Gaussian curvature K

FhF%Q + F%1F§2 + eaz + (Ffl)v = F%QF% + F%2F%2 + faxn + (F%Q)u
= ([l)u — (T3)u + Tl + TIT, — T 0Yy — T35, = easy — fan
eg — f?
EG — F?
= (TFy)u— (T5))o + D1l + TIT, — T T3, — 1T, = —FK,

= ([Fy)u— ([F))o + D1l + 0305, — T35, —THTS, = —E

THEOREMA EGREGIUM (Gauss) The Gaussian curvature K of a surface is invariant by
local isometries.

Remarks

e By equating the coefficients of X, in equation (x), we obtain another formula of the Gaussian
curvature K.

(Fb)u - (Fh)v + beh + F%QF%Q - Fhrb - F%IF%Q = (Fiz)u - (Fh)v + F%QF%Q - P%1F§2 =FK.
e By equating the coefficients of N in equation (%), we obtain

ey — fu= @Fb + .f(F%Q - F%]) - gr?] (T)
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e By equating the coefficients of N in equation (X,,), — (Xyu)» = 0, we obtain
Jo— Gu= 55F52 + f(rgz - Fiz) - .(]F%Q (H)

Equations (f) and () are called Mainardi-Codazzi equations.

Theorem (Bonnet) Let E, F, G, e, f, g be differentiable functions, defined in an open set

V C R?, with E > 0 and G > 0. Assume that

e the given functions satisfy formally the Gauss and Mainardi-Codazzi equations,
e and that G — F? > 0.

Then,

e for every q € V there exists a neighborhood U C V of ¢,
e and a diffeomorphism X : U — X (U) C R?

such that the regular surface X(U) C R® has E, F, G and e, f, g as coefficients of the first and

second fundamental forms, respectively.

Furthermore, if U is connected and if

X:U—-X{U)CR®

is another diffeomorphism satisfying the same conditions, then there exist a translation 7" and a

proper linear orthogonal transformation p in R?® such that

X=TopoX.

Remark In the following, we shall calculate the Christoffel symbols and Gaussian curvatures in

terms of the metric tensor (g;;) and its partial derivatives.

Let U be an open subset in the u us-plane, and X : U C R*> — S be a parametrization in the

orientation of S. At each p € X(U), let X; = X,,, X2 = X,,, and let

921 g22

g1 = (X1, X1) =FE, gia=090=(X1,X0) =F, go= (X0, Xs) =G <= (gn 912) = (

and

gt g2 — (¢7) = (g) = 1 g2 —g12) _ 1 G —F
g g Y det(gi;) \—921 g1 EG—-F2\-F E )

Note that )
mke () 1 ifm=1/
E 9" Gkt = Ome = { . :
— 0 it m#(

£ F
F G

Since X;, X5, N € R? are linearly independent, we may express vectors Xij = Xy, € R? and

N;=N,, € TS as

o hi1 h e f
k _ n g\ _
E Xk + higN, i, j=1,2, where (h21 h22) = (f g)

Page 7
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(i Qo1 _ hin hio (g ¢" _ 1 hir haa - 921

a1z Qg2 hor haa) \g*' g% EG — F? \ha1 ha —g11)’
as obtained in Chapter 3 and the coefficients I"C 1,7 = 1,2, are called the Christoffel symbols of
= Xj;, we conclude that Fk = T'%: that is, the Christoffel

S in the parametrization X. Since X;; = Xj;, i)
symbols are symmetric relative to the lower indices.

Geometry

where

922
912

To determine the Christoffel symbols, we take the inner product of the X;; with X; and use the

definition of (g;;) and (g

/) to obtain

0 99
<Xijan> = a_<Xi>Xk> - <X2'7ij> = J9% _ <Xi7ij> = Gik,j — <Xi>ij>a
'LL]' (9Uj
g
h = 7
where gy o,
() 2
= (Z U5 Xe, Xi) = ging — (Xi, Xij)
=1
2
= erjgek = Girj — (Xi, Xij)
o=
" 2 2 2
— Z Z L59™ gon = ngkgik,j - ngk<Xi,ij>; m=1,2
k=1 (=1
() 2
) 0l = Zg Ginj — Zg (X, Xpj), m=1,2
=1
() :
= ng’“gik,j - ngﬂxi,xkj), m=1,2
=7 mk mk
= Zg ik, — ZQ sz m=1,2
P 2
= 27 = ZQ (Gir,j + Giki) ngk6_uk<Xi’ X;) = ngk(gik,j + Giki — Gijk), ™M=
k=1 k=1
1 4 o
= I = 2 ngk(gik,;j + Giki = Gijk)s M, 0, J=1,2.
k=1
Since X : U Cc R? — R? is differentiable,
(Xii)j = (Xig)iy 1<i#j<2
— (Z Tk X, + h“N> (Z 5 X, + Ry )
j i
2 2 2 2
k=1 k=1 k=1 k=1
ork Oh;;
where (FZ)J = auj s hfij,i = a—u:
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2 2 2
= ) (T X+ Z TRTL X0+ > ThhigN + higN + > hiag X,
k=1 k, =1 k=1 k=1
2 2 2
=Y (Th)Xi + Z DETLXe+ ) TN + hiaN + > hijag Xy,
k=1 k, f=1 k=1 k=1
2 2 2 2
< Z(sz)]Xk + Z FfZFIZJXk + Z Fth]N + hii,jN + Z hiiaijk k < ¢ in double sum
k=1 0, k=1 k=1 k=1
2 2
=) (k)X + Z T4T5 X, + Z TEhiN + hijiN + > hijag Xy, k<> £ in double sum
k=1 0, k=1 k=1
2
= 0= Z [(Fk ZF T — ZF Fe] + hijag; — hiag; | X,
k=1
+ hzg i hzzg + Z Ffjh'k:z - Z Fzzhk]>
= (%) Z I ZF Tb = hyayy — hjar, 1<i#j <2,
and  hyji — hi Z Fk hi; — Z F qhi; =0 1 <i# 7 <2 called Mainardi-Codazzi equations
Since hij = h/jia 1< #] < 2,
PUORR (b b1 hey —hy\ _ 1 hay  —haz
h* h?? hor hao eqg— f2 \—hia  hn eqg— f2\—ha  hu)’
we have
2
hiar; — hija, = (eg — )W ar; + W'ay] = (eg — %) Z W ag
=1
't hi2 a, a . i
= @g—f%x{(wl}ﬁJ-(;;(;D}M<ﬂw1hamwofw ) ()

hll h12 hll

h*! h22) ' (h21 h22> . ( 912
)= (% )
ik ik

eg — f?
EG — F2

Ko

hia 922 921

—gn

dl

g21
—J11

).

922
g12

and the Gauss curvature formulas

(T5):

g21
—Jg11

—g22

F —-F
+ ZF F[Z ZF FIZJ = h’iiakj — hijak’i = K X < 012

).
Jk

2
1 o
where Ffj = 5 nge(gif,j + gjf,i - gij,@)a v, 7, k= 17 2.

(=1
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In particular, we obtain the following when

2
j=k=2i=1= (I~ 1)+ ZF T — Zfﬁ% = —hiag1 + hirag = —EK,
(=1
2
j=k=1i=2 = (Pél 22 1+ ZF I%z - ngzrh = hosap1 — horape = —GK,
(=1

2
]#k:]_, Z:]_ — (Fb F%l 2+ZP I‘él—ZFle}Q:—h12a11—|—h11a12:FK.
/=1

Example Let X (uj,us) be an orthogonal parametrization (that is, F' = g1 = go1 = 0) of a

- g+ 0]
neighborhood of an oriented surface S. Let glf; = 85 and grem = _8ZM' Since
2 1 ifi=j
ik :512 b — —0 and 12 _ 21:0
Zg Gkj J {0 it g12 = go1 g g ,

1
_gkk(gjk,i + Grij — Gijk), we have

1
. E ke _
and using Fij =5 Zg (gjé,i + Geij — gz‘j,f) 9

k=1

nggk€+zg Grem =0 = Zgéjzg gké‘i‘zg@Zngngm—O
=1 =1

- w - ng m6 Z g gk[ mg == quln - qLL Gijm qU - (]trtn - _(J“ Gii,m qLLJ
k, (=1
1 1 1 . '
— I, = 5922 g1, Th= _5922 g0, Il = 5911911,% Tl = 5911911,1, r2, — 5922 4o
and

2
(F%Z F%l Z IR ZF%F?Q = —Kgn
=1

1 1

1 1
— B} (922 922,1)1 + 5 (922 911,2)2 ) (911 gi12 9% 911,2) + 1 (922 9221 97 922,1)
1 1
1 g 911 1 g 922 1) + 1 (922 g11,2 g% 922,2) =—Kgn

!

(2\/911922 VvV 92 2\/911922 \V 922
( g22,1 ) 91 + ( g11,2 ) Vi — Ky,
K=

!

2\/911922 2\/911922 vV 92

!

1 {( 9221 ) +( g11,2 )}
2\/911922 V911922 / 4 V911922 / o

Parallel Transport. Geodesics.

9221 1) n ( g11,2 \/911) " (922,1)2 + 91129222 (911,2)2 + g11,1922,1

4 (922)2 4 g11 922

Definition Let w : U — R? be a differentiable tangent vector field in an open set U C S and

p € U. Let y € T,,S. Consider a parametrized curve
a:(—e,e) = U, with a(0)=pand o(0) =y,
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and let w(t) = w(a(t)) € TowS, t € (—¢,¢), be the restriction of the vector field w to the curve
.

Dw
Then the covariant derivative at p of the vector field w relative to the vector y, denoted E(O)

d
or Dyw(p), is defined to be the normal projection of d—ztU(()) onto the plane T),S, i.e.

Dw dw dw
D 0y = 2 0) — (%2(0) N o)) .

In terms of a parametrization X (ui,us) of U C S at p, let X (uy(t),uz(t)) = a(t) C S and

2

w(z‘) =a1 (ul(t), Ug(t))Xul + ag(ul (t), Ug(t))XuQ = a1 (t)Xl + CLQ(t)XQ = Z (lijj S TQ(T)S

=1

be the expression of «(t) and w(t) in the parametrization X (u,v), respectively. Then

2 2 2 2 2
WS xS aX = S X+ Y aalhgN + 3 al X
dt 1qj Uy <N Wil ik i Wjllig k<\E

i,j=1 i=1 i, 5,k=1 i,j=1 k=1

and the covariant derivative of w at t is given by

2 2
Dw &
T 2 anThXet ) diX,
- i, jk=1 i=1
2 2
= ((L;{ + Z FZ(L{IL}) X € Tow)S
k=1 i, j=1

Dw
Note that the covariant differentiation o depends only on the vector (u}, us), the coordinates of

o(t) in the basis { X7, X5}, and not on the curve . Also since it depends only on the Christoffel

Dw
symbols, that is, the first fundamental form of the surface, the covariant differentiation o is a

concept of intrinsic geometry.
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Definition A vector field w € T,S along a parametrized curve oo : I — S is said to be parallel

D
ifd—zu:OforeverthI.

Example In a plane P, since Ffj =0,1<14,7,k <2, the notion of parallel field w = a; X1 +a X5
along a parametrized curve a C P reduces to that of a constant field, i.e. a] = a; = 0, along «;
that is, the length of the vector and its angle with a fixed direction are constant.

Those properties are partially reobtained on any surface as the following proposition shows.

Proposition Let w, v € T,S be parallel vector fields along « : I — S. Then (w(t),v(t)) is
constant for all ¢ € I. In particular, the lengths |w(t)| and |v(¢)| are constant, and the angle

Z(v(t), w(t)) between w(t), v(t) € Tow)S is constant for all ¢ € 1.
D D
Proof Since w(t), v(t) € TS and d—:;) = d_: = 0, we have
d dw dv Dw Dv
L w(e).000) = (% o) + o), 2 = (22 (e + wie), 2% =0

and (w(t),v(t)) = constant for all ¢ € I and for any parallel vector fields w and v along a.

Proposition Let a : I — S be a parametrized curve in S and let wy € Ty,)S, to € I. Then
there exists a unique parallel vector field w(t) = a1 () X (uq(t), ua(t))+as(t) Xo(uyi(t), us(t)) along
a(t), with w(tg) = wy, i.e. there is a unique solution to the initial-value problem

2
ay, + Z Ffjaiu;- =0, k=12, with a1 X1 + a2 Xs|t—t, = w(ty) = wo.

i,7=1

Definition Let o : I — S be a parametrized curve and wy € Tl «,)S, to € I. Let w be a paralle
vector field along o, with w(ty) = wy. The vector w(ty), t; € I, is called the parallel transport of
wy along a at the point ;.

Definition A nonconstant, parametrized curve v : I — S is said to be geodesic at ¢ € [ if the
field of its tangent vectors +'(t) is parallel along ~ at ¢; that is

DH/(1)

dt ’

7 is a parametrized geodesic if it is geodesic for all ¢ € I, i.e. y(t) = X(u1(t),u2(t)), t € [ 'is a
geodesic if 7/(t) = u} X1 + uy X, satisfies the geodesic equations

Dy'(t) :
— =0 = i+ Y Thuf, k=12 ()

ij=1

Examples
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(1) If S is a plane, then S can be parametrized by X (uj,us) with X;; = X, = 0 € R?
everywhere in S, 1 < 4,7 < 2. This implies that X; = X,, and Xy, = X, are constant
vector in S, Ffj =0forall 1 <i,j,k <2 and y(t) = X(ui(t),us(t)) is a geodesic in a plane
S if

up(t) =0, Vt € I = uy(t) = ¢, (a constant) Vt € I = wy(t) = cpt+dp Vt €1, k=1, 2

Hence 7 is a geodesic in a plane S if and only if v is a straight line in S.

(2) Let v(u2) = (f(u2),0,g(uz)), f(uz) # 0, a < ug < b, be a regular curve and S be a surface
of revolution with the parametrization

X(ug,uz) = (f(ug) cosuy, f(ug)sinug, g(ug)), 0<u; <2m, a<ug <b.

2
Then the matrix (g;;) and its inverse (g"/) of the first fundamental form Z gijuiu; are

i,7=1
given by

@i §l§> - (JSZ (f’)Q?r(g’V) = (ﬁli gi) :(f02 () +O<g'>2]‘1>

1
where f and g are functions of us and the Christoffel symbols Ffj =3 Z gu(gjm#—ggi,j— Gije)
=1
are given by

1 1 _
r = 5/ (914 + 9115 — gij1) and T = 5 [(F)2 4+ ()] (g0 + 9205 — Giz2)
and
LT g .
1 1 2 2

(G )=l | me (B ER)-| T
F21 F22 JJ 0 F21 F22 0 g 'g
f? (f)?+(g)?

this implies that X (uy(t), ua(t)) is a geodesic of the surface of revolution S if uy, uy satisfy
the system of equations

21 ff f'1"+4d9"
W/ + b, =0 and v — —t—— (U)o () =0, (Tt
1 f2 12 2 (f/)2+(q,)2( 1) (f/)2+((]/)2( 2) ) ( )
d d
where uj, = uk = f and ¢’ = e
dug
If the merid1an v(s) = {X(ul,u2) | u1 = constant, us = uy(s)} is parametrized by arc

length s, then the 15 equation of (1) holds, and, since 7'(s) = Xju] + Xou, = Xous,

L= (7'(5),7(8)) = L(7/'(s)) = (Xvuj+Xoup, Xyui+Xoup) = g2 (u3)* = [(f')*+(¢')?] (ud)?,

we have ) PR gy
() 2 o = W = - ot

()2 +(9)]
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Geometry Study Guide 4 (Continued)

d
by differentiating both sides with respect to s and using the Chain Rule to get T = f"u
s

d
and d—g' = ¢" uj. Multiplying both sides by uj, we get
s

(uh)? uly = — [(;/{2 :(ggng uh)? H0N uy = —%%(ugf the 2" equation of (1)

and this implies that arc length parametrized meridians are geodesics.
If the parallel v(s) = {X(u,u2) | us = constant, u; = uy(s)} is parametrized by arc
length s, since 1 = L,(v(s)) = (f(ug))*(u})?, we have (u})* = 1/f(us) = constant # 0

!N

which implies that 2uju] = 0 = uf = 0, i.e. the 1" equation of (1) holds, so the arc
length parametrized parallels are geodesics if it satisfies the 24 equation of (1)

I

TP+ G =0 = =0 sinee 0,44 40

Geodesic

Nota
geodesic

(eodesic

Definition Let w be a differentiable field of unit vectors along a parametrized curve a: I — S
on an oriented surface S. Since w(t), t € I, is a unit vector field,

dw Dw Dw
E(t) Lw(t) = e {E} (N Aw(t)),

w
where the real number {%] is called the algebraic value of the covariant derivative of w at t.

Definition Let C' be an oriented regular curve contained in an oriented surface S, and let «a(s)

be a parametrization of C| in a neighborhood of p € S, by the arc length s. The algebraic value

Dd/(s)
ds

of the covariant derivative of o/(s) at p, {
.
Remark The geodesics which are regular curves are thus characterized as curves whose geodesic

curvature is zero and note that the geodesic curvature of C' C S changes sign when we change
the orientation of either C' or S.

} =k, is called the geodesic curvature of C' at
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Furthermore, since d = kn(s), where n(s) is the unit normal vector to C' at a(s), and since
S
Dd/(s)  da'(s) ,dd/(s) S
5= s Ty NN =knls) — kn(s), N)N = kn(s) — kN = Ky + k= k7

Geodesic curvature of a parallel
on a unit sphere.

Example The absolute value of the geodesic curvature k, of a parallel C' of colatitude ¢ in a
unit sphere S? can be computed from the relation
1 1 _ cos’p

=4+ =14+k = k= —1= = cot? ¢,
sin? ¢ no g 9 sin%o sin? o 7

where the sign of k; depends on the orientations of S? and C.

Lemma Let a and b be differentiable in I with a® 4 b = 1 and ¢, be such that a(ty) = cos o,
b(ty) = sin @o. Then the differentiable function ¢ defined by

o(t) = o + /t(ab/ —ba') du

to
satisfies
cos(t) =al(t), sinp(t)=>0b(t), fortel, and (ty) = vo.

Proof It suffices to show that the function

(a—cosp)? +(b—sinp)? =0 Vtel,
T 2—2(acosp+bsing) =0 Vtel,

< A=acosp+bsinp=1 Vtel.

Since a®> +b* =1 for all t € I, ad’ = —bb’ and, by the definition of ¢, we have

A" = —a(sing)y +b(cos)p +a cosp+ b sing
—a (sinp) (ab’ — ba’) + b (cos ) (ab’ — ba') + a’ cosp + b sinp
WY (sin ) (a? + b%) — a’ (cos @) (a2 + b2) + d’ cosp+ b sing
a?+b%=1

= 0 Vtel.
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Therefore, A(t) = const., and since A(ty) = 1, the lemma is proved.

t
Remark Note that the differentiable function ¢ defined by v (t) = ¢o — / (ab' —ba') du satisfies

to
cos(t) = a(t), —siny(t)=0b(t), fortel, P(to)=po, and Y'(t)=—¢'(t).
Lemma Let v and w be two differentiable vector fields along the curve a: I — S, with |w(t)| =

lo(t)| =1, t € I. Then
Duw) _[Dv] _do
dt dt | dt’

where ¢ is one of the differentiable determinations of the angle from v to w, as given by the
preceding Lemma.

Proof Since |w(t)| = |v(t)] =1, for all ¢ € I,

(v(t),w(t)) =cosp(t) Vtel

d d

(o w) + (v, ) = —singp

Dv Dw _ ,

D0 )+ (0.2~ —singy

Dv Dw Dv Dw ) ,
[_t] (N Av,w) + [W] (v, N Nw) = {E] (N ANv,w) — {%} (w, N Av) = —sinpp

[ A

(ng] - B:}UP o= (|5] - |5]) o nu) = = sines

) (—sinp) = (—sinp) ¢’ if necessary switch orientation of angle Z(v, w)

Duw Dv| dy
If i in th T lar | A
© # 0, then sin ¢ # 0 and we obtain that [ 7 } [dt} dt

If ¢ =0 at p, either ¢ = 0 in a neighborhood U of p, or there exists a sequence (p,) — p with

©(pn) # 0. In the first case, ¢’ = 0 in U, v = w and the Lemma holds trivially. In the second
D D d
d—:}} - {d—:] = d_f at pn, the Lemma holds by continuity.

case, since {
Remarks
(a) In particular, if

e (' is a regular oriented curve on S,

e «(s) is a parametrization by the arc length s of C' at p € C,
e v(s) is a parallel field along «(s),
w(s) = d/(s),

then

ky(s) = {D(;;(S)} _ {Dz;(s)} _ [Dsis)] _ fl—f, where o(s) = Z(u(s), o/(s)).

In other words, the geodesic curvature £, is the rate of change of the angle that the tangent
to the curve makes with a parallel direction along the curve. In the case of the plane, the
parallel direction is fixed and the geodesic curvature k, reduces to the usual curvature k.
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(b) Proposition If X (uj,us) is an orthogonal parametrization (that is, F' = g15 = go1 = 0)
of a neighborhood of an oriented surface S, and w(t) is a differentiable field of unit vectors
along the curve X (uy(t), us(t)), then

Dw 1 , dy 1 , dy
{ dt } = ﬁ (922,1 Uy — J11,2 U/l) + dfﬁ; = Q\/T—G (Gu, UIQ — By, uy) + at’ (1)

where ¢(t) is the angle from X; to w(t) in the given orientation.

g G2\ _ <X1,X1> <X1,X2> 911 912 _ (911 Y12 - g = det g G2
921 G2 (X9, X1) (X2, X2) )’ gt g* 921 G2 ’ g1 922)

Proof Since X (uq,us) is an orthogonal parametrization, we have
gu g2\ _ (9u 0 gt g _ g 0 _ g 0
921 G22 0 g) \9* ¢* 0 g% 0 g

) 1 1
and since P?j =5 ngg(gjﬂ,i + Guij — Gije) = §gkk(9jk,i + ki — Gijk), we have

=1
1 1 1 1
Iy, I _ ggn g11,1 5911 g11,2 and s, 12 _ —5922 g11,2 ?922 9221
F%l F%Q 11 1 11 F§1 F%Q 1 22 22
59 912 —59 9221 5979221 597 922.2
2 2 2 2
Xi . : :
Let €;(t) = e;(ui(t),us(t)) = —, i = 1, 2, be the field of unit vectors e; = restricted

V gll V g'l'l
to the curve X (uy(t), us(t)) with e; Aey = N, the given orientation of S, and set v(t) = e;(t)

in the preceding Lemma, we get

[%} _ [D_B] Lo lD%Nﬁ)} bl [D(XMNE)

dt dt dt dt dt dt’

Now

() o 2

2

. gi1,; U .7 1 1 2
- _Z 3/2 Z\/EFIJUJX1+Z Fljuj

J11,5 U j 2 Uy + Ga2.1 U

. gi1,5 U J — 911,
- _Z 3/2 Z 232 X1+Z 2./011 922 €2

jlg 7=1

2
_ Z — G112 U} + goz1 U
= 2y/911 922

€2

This implies that

Dw] _ [D(X1/y/gn) N dp _ i —g11,2 Uy + G221 Us . dy
dt dt it~ 273 dt
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(c) Proposition (Liouville) If a(s) is a parametrization by arc length of a neighborhood of

a point p € S of a regular oriented curve C' on an oriented surface S, and if X (uq,uy) is an
orthogonal parametrization of S in p and ¢(s) is the angle that X; makes with o/(s) in the

given orientation, then

, d
kg = (kg)1 cos@ + (kg)2 sing + d_i’
where (k,); and (k, ), are the geodesic curvatures of the coordinate curves us = const. and

uy = const. respectively.
Proof By setting w = o/(s) in the preceding Proposition, we obtain
Dw 1 dy
ky=|—|==—= b — )+ —.
Let v1(s) = {X (u1(s),ua(s)) | u1 = u1(s), ug = constant} and ya(s) = {X(u1(s), uz(s)) |
us = us(s), up = constant} be arc length parametrized coordinate curves with geodesic
curvatures (ky); and (k, )9, respectively. Since

1
1= (7(s),7%(s) = gu(w)® = uj = , =12,
Gii
and Z(X1,7}) = 0, Z(X1,7,) = g for all s,
D~/ 1 DA} )
b = 28] = S et = = I, () = | DB -t
ds 2\/g 2911/ 922 ds 2\/9 2g22+/911

Also since ¢(s) is the angle that X; makes with o(s) = u} X;+u5 X5 in the given orientation,
and since

Xl . Xg
cosp = (a/, = /gnu, and siny = (d/, = /G,
(IO < \/‘E> gll 1 SO < \/E> 922 2
we have
. d 1 d
(kg1 cosp + (ky)2 sinp + Do (go2,1 Uy — gr12uy) + 2= kg.

ds 2\/9 ds

The Gauss-Bonnet Theorem and Its Applications

Definition Let «;[0,¢] — S be a continuous map from the closed interval [0, ¢] into the regular
surface S. We say that « is a simple, closed, piecewise regular, parametrized curve if

1. «(0) = a(f),
2.ty # tg, 1y, ta € [0,0), then a(ty) # a(ta),
3. there exists a subdivision 0 = ¢ty < t; < -+ < tp < tgr1 = £ of (0,4] such that « is
differentiable and regular in each (t;,t;41),1=0,...,k,
4. lim o/(t) = o/ (tF) # 0 exists for each i = 0,. .., k.
t—tF
The points a(t;), i = 0,...,k, are called the vertices of o and the traces «a([t;, t;11]) are called

the regular arcs of a. It is usual to call the trace «([0,¢]) of a, a closed piecewise regular curve.
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The sign of the external angle in the case of a cusp.

Assume that S is oriented and let |6;], 0 < |0;| < 7, be the smallest determination of the angle
from o/(t;) to o (t]). If |0;] # m, we give 0; the sign of the determinant (a/(¢;), o/(¢;), N). This
means that if the vertex «(t;) is not a “cusp”, the sign of 6; is given by the orientation of S. The
signed angle 0;, —7 < 6; < 7, is called the exterior angle at the vertex a(t;).

Gauss-Bonnet Theorem (Local) Let X : U — S be an isothermal parametrization (i.e.,
F=g13=01=0 E=g = gon=G=M(up,up)) of an oriented surface S, where U C R? is
homeomorphic to an open disk and X is compatible with the orientation of S.

Let R C X(U) be a simple region of S and let a: I — S be such that OR = «(I).

e Assume that « is positively oriented, parametrized by arc length s, and

e let a(sp),...,a(sg) and by, ..., 0 be, respectively, the vertices and the exterior angles of .

Then
k Sit+1 k
Z/ kg(s)ds—i-//Kda—&—ZQ,L-_QW7 (%)
i=0 * % I i=0

where ky(s) is the geodesic curvature of the regular arc of o and K is the Gaussian curvature
of S.

Remarks

(a) If R C X(U) is a geodesic triangle in S (that is, a triangle whose sides are arcs of geodesics),
then k,(s) =0, s € (t;,ti41), i =1, 2, 3 and
3 3 3
//KdazQw—Z@i:%T—Z(ﬂ—goi):Zgoi—ﬂ,
R i=1 i=1 i=1

where ¢; = m — 6; is defined to be the interior angle at the vertex «(t;). In particular, if
K = constant, then

3
Y pi—m= // Kdo = K A(R), where A(R) = the area of R.
i=1 R

(b) The restriction that the region R be contained in the image set of an isothermal parametriza-
tion is needed only to simplify the proof and to be able to use the theorem of turning tan-
gents. As we shall see later (Corollary 1 of the global Gauss-Bonnet theorem) the above
result still holds for any simple region of a regular surface. This is quite plausible, since Eq.
(%) does not involve in any way a particular parametrization.
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Proof Let u; = uy(s), ug = ua(s) be the expression of X. By using a preceding Proposition, we
have ) J
ky(s) = —— uhy — ] %,
4(5) NG (go2,1 Uy — gri2uy) + I
where ¢; = p;(s) is a differentiable function which measures the positive angle from X, to o/(s)
in [s;,s;41]. By integrating the above expression in every interval [s;, s;41] and adding up the
results,

9221 du2 _9n2 duy

2,/9 ds 2\/9 ds

9221 duy G2 du,

2,/9 ds 2\/_ ds

g11,2 9221 . ..
— == | du; + ( : ) dug = 27 — 0; since « is simple closed
) o \2vg Z:I

r k
g11,2 9221
= ; + : duq dug + 21 — E 0;
//X-1<R> _(wa)w (m)uj e o

since « is positively oriented and by the Green’s Theorem

- )\UQ) ()‘m) ] k | 2
= — | + duy dug + 2 — 6, since g1 = goo = N2 =g
//Xl(R) _( A s A ZZ:;
k
= // [(log N uyu, T (log )\)ulul] duy dus + 2 — Z 0,
Y(R) L

_ 2
— // 3)2)\2 Alog)\)duldug—i—%r—ze

=0

sz sz—l—l) Qpi(si))
= 0

i)
o

(@i(sit1) — @it1(Sit1)) + @r(sk+1) — wo(s0)

I
on
A~ I/~

k
= — // K M\ duy duy + 21 — Z 0; by the Exercise 2 of 4-3

= //Kdo—l—Zﬂ—ZQ since g = \?

=0

Hence we have

k Sid1 k
Z/+ )d5+//KdU+ZQi:27T.
R i=0

1=

Remark

e Let X : U — S be an isothermal parametrization at a point p € S, and let R C X(U) be a
simple region without vertices, containing p in its interior.

e Let a: [0,¢] — X (U) be a curve parametrized by arc length s such that OR = «([0, ¢]).

e Let wy be a unit vector tangent to S at «(0) and let w(s), s € [0, ¢], be the parallel transport
of wy along a.
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Then

¢

D

0 = / [d—:)] ds since w is parallel along «
0

4 4
by (1) 1 dus duq /dgp
= u _— E’LL2 — d — d
/02\/EG(G1dS ds) S
b () _ / / K do + () — o(0).
R

where ¢ = ¢(s) is a differentiable determination of the angle from X, to w(s). It follows that
©(l) — p(0) = Agp is given by

Now, Ay does not depend on the choice of wy, and it follows from the expression above that Ay
does not depend on the choice of «(0) either. By taking the limit

Ap
lim —— =K
S (),
where A(R) denotes the area of the region R, we obtain the desired interpretation of K.
Definitions
e Let S be a regular surface. A connected region R C S is said to be regular if R is compact

and its boundary OR is the finite union of (simple) closed piecewise regular curves which
do not intersect (the region in (a) is regular, but that in (b) is not).

@ )

e A simple region which has only three vertices with exterior angles «o; # 0, ¢ = 1,2, 3, is
called a triangle.

e A triangulation of a regular region R C S is a family .# of triangles T;, i = 1,...,n, such
that
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L. Oﬂz U ni==r
=1

TieF
2. If T, N T; # 0, then T; N7} is either a common edge of T; and 7} or a common vertex
of T; and T}.
e Given a triangulation .% of a regular region R C S of a surface S, we shall denote by
— F the number of triangles (faces),
— E the number of sides (edges),
— V' the number of vertices of the triangulation.

The number
F-—FE+V=x

is called the Euler-Poincaré characteristic of the triangulation.
Propositions (without proofs)

1. Every regular region of a regular surface admits a triangulation.

2. Let S be an oriented surface and {X,}, o € A, a family of parametrizations compatible
with the orientation of S. Let R C S be a regular region of S. Then there is a triangulation
Z of R such that every triangle T' € .% is contained in some coordinate neighborhood of
the family {X,}. Furthermore, if the boundary of every triangle of .% is positively oriented,
adjacent triangles determine opposite orientations in the common edge.

Sphere x=2 Sphere with one handle X=0  Sphers with two handles x =-2

3. If R C S is aregular region of a surface S, the Euler-Poincaré charateristc does not depend
on the triangulation of R. It is convenient, therefore, to denote it by x(R).

4. Let S C R3 be a compact connected surface; then one of the values 2, 0, =2, ..., —2n, ...
is assumed by the Euler-Poincaré charateristic y(S). Furthermore, if S’ C R* is another
compact surface and x(S) = x(5’), then S is homeomorphic to S’.

In other words, every compact connected surface S C R? is homeomorphic to a sphere with
a certain number g of handles. The number
_2—x(9)

g is called the genus of S.

4. Let R C S be a regular region of an oriented surface S and let .# be a triangulation of R
such that every triangle 7; € #, j = 1,...,k, is contained in a coordinate neighborhood
X;(U;) of a family of parametrizations {X,}, o € A, compatible with the orientation of S.
Let f be a differentiable function on S. Then the sum

k
> // fuj,v5)/ E;G — F7 duy dv;
j=1 X HTy)
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does not depend on the triangulation .# or on the family {X;} of parametrizations of S.

This sum has, therefore, a geometrical meaning and is called the integral of f over the
regular region R. It is usually denoted by

J[ rae

Gauss Bonnet Theorem (Global) Let R C S be a regular region of an oriented surface and
let (', ..., C, be the closed, simple, piecewise regular curves which form the boundary 0R of R.
Suppose that each C; is positively oriented and let 6y, ..., 6, be the set of all exterior angles of
the curves C4,...,C,. Then

n P
Z/ ky(s)ds + // Kdo + Zﬁg =2mx(R) (),
=1 /G R (=1

where s denotes the arc length of C;, and the integral over C; means the sum of integrals in
every regular arc of Cj.

Proof Consider a triangulation % = {T]}f:1 of the region R such that every triangle 7} is
contained in a coordinate neighborhood of a family of isothermal parametrizations compatible
with the orientation of S. Such a triangulation exists by a preceding Proposition. Furthermore,
if the boundary of every triangle of .% is positively oriented, we obtain opposite orientations in

the edges which are common to adjacent triangles.

By applying to every triangle the local Gauss-Bonnet theorem and adding up the results we
obtain, using a preceding Proposition and the fact that each interior side is described twice in
opposite orientations,

Z/C kg(S)dSJr//RKdaJrZF:XS:ij:sz,

j=1 k=1
where F' denotes the number of triangles of .%, and 6}, 02, 0;3 are the exterior angles of the
triangle Tj.

We shall now introduce the interior angles of the triangle T, given by p;, =7 — 0, k =1, 2, 3.
Thus,
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We shall use the following notation:

number of exterior edges of .7,
= number of interior edges of .7,

number of exterior vertices of .7,

== =&
I

= number of interior vertices of #

Since the curves C; are closed, E, = V,. Furthermore, it is easy to show by induction that
3F =2F;, + E.

and therefore that

F 3
Y>> 0y =2mE; +7E, — Zz%k
j=1 k=1

71=1 k=1
Observe that

e the exterior vertices may be either vertices of some curve C; or vertices introduced by
the triangulation, and if V. is the number of vertices of the curves C; and V. is the
number of exterior vertices of the triangulation which are not vertices of some curve C},

then V; = ‘/ec + ‘/et-

e the sum of angles around each interior vertex is 27, the sum of angles around each exterior
vertex of the triangulation is 7.

We obtain
p

F 3
Z Zejk =2rE;, +7E, — 27V, — 7V, — Z(ﬂ' —by).
j=1 k=1

(=1

By adding 7F, to and subtracting it from the expression above and taking into consideration
that £, = V., we conclude that

F 3 p P
ZZij:27rEi+27rEe—27rV;—7TVe—7rVet—ﬂ/ec—i—zeg:QWE—QWV—i—ZHg.
=1

j=1 k=1

By putting things together, we finally obtain

Z/ ds+//Kda+29g—27r(F E+V)=2rx(R).

Corollary If R is a simple region of .S, then

Z/+ ds—l—//Kda—IrZ@—Qw

Corollary Let S be an orientable compact surface; then

/ [ Ko =2nx(5)
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